CS 477:

Advanced Operating Systems

OS Design & Organization

Focus of today’s lecture

e Course logistics and policy
* A brief primer on operating system

* Overview of OS design / architecture

General information

* Quick primer — Operating Systems: Three Easy Pieces

* Set of optional research papers for every week
* Course organization: Lecture, lab, exercises, project, written midterm and finals

e Staff email: cs477-staff@aroupes.epfl.ch

* |nstructors:
Sanidhya Kashyap, Yujie Ren
e Current TAs:

Yueyang Pan, Kumar Kartikeya Dwivedi, Lucas Cendez Lopes

http://pages.cs.wisc.edu/~remzi/OSTEP
mailto:cs477-staff@groupes.epfl.ch

Topics planned

e OS architecture and design
* Processes and Threads

* Scheduling

* Virtual Memory

e Storage stack

* Concurrency

* Virtualization

* Security

Sep 9 Sep 10 Sep 11 Sep12 | Sep 13 | Sep 14 Sep 15

LEC 1: OS organization Lab 0: : eBPF tutorial
Sep 16 | Sep 17 Sep 18 Sep19 | Sep20 | Sep 21 Sep 22
Sep 23 | Sep 24 Sep 25 Sep26 | Sep27 | Sep 28 Sep 29
LEC 3: Scheduling Lab 1: : Scheduler with
DUE: Lab0 eBPF
Sep 30 | Oct1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6
LEC 4: Scheduling Il
Oct 7 Oct 8 Oct 9 Oct10 | Oct 11 Oct 12 Oct 13
LEC 5: Virtual Memory Course Project starts
DUE: Lab 1
Oct14 | Oct 15 Oct 16 Oct17 | Oct18 | Oct19 Oct 20
LEC 6: Virtual Memory I
Oct 21 Oct 22 Oct 23 Oct24 | Oct25 | Oct 26 Oct 27
Oct28 | Oct 29 Oct 30 Oct 31 Nov 1 Nov 2 Nov 3

LEC 7: Mid-term

Nov 4 Nov 5 Nov 6 Nov 7 Nov 8 Nov 9 Nov 10
LEC 8: File Systems and LFS

Nov 11 Nov 12 Nov 13 Nov 14 | Nov 15 | Nov 16 Nov 17
LEC 9: Storage Media

Nov 18 | Nov 19 Nov 20 Nov21 | Nov22 | Nov 23 Nov 24
LEC 10: OS Concurrency

Nov 25 | Nov 26 Nov 27 Nov 28 | Nov29 | Nov 30 Dec 1
LEC 11: Virtualization

Dec 2 Dec 3 Dec 4 Dec 5 Dec 6 Dec 7 Dec 8
LEC 12: OS Security

Dec 9 Dec 10 Dec 11 Dec12 | Dec 13 | Dec 14 Dec 15
LEC 13: Final exam

Dec 16 | Dec 17 Dec 18 Dec19 | Dec 20 | Dec 21 Dec 22
LEC 14: Project Presentations
DUE: Course project

Software platforms

* We will use multiple software platforms:
« Moodle: Links to software platforms you need to register
« ED: Communicate with the course staff and other students

« Github classroom: For submitting the lab

Lectures

e The slides will be available before the class
 We will only have live lectures

 They will NOT be recorded

* You are expected to attend every lecture

Note:
* Non-overlapping: 21
* Lecture overlapping: 22

* Other overlapping: 8

Exercise sessions

* The exercise session consists of:
Set of subjective questions with answers discussed in the class
No written solution will be released

e Students are expected to attend the exercise session to ask questions

Lab / project session

 Wednesday 2—-4 PM in INM 202

* TAs will be present to answer questions

Grading policy:

* Lecture notes: 5%
* Lab: 15%
* Exams: 35%
* Midterm: 15%
* Finals: 20%
* Project: 45%

10

Lecture notes (5%)

e 2-3 students work in a group to take notes of the class and write a report
Must be submitted within a week

 We will release lecture sheet for people to sign up.

11

Lab (15%)

* Onelab
* Lab must be solved individually without using any help from Al assistants
* Will zero the whole lab in case we find it
e Duration: 4 weeks in total
Part |: Already released

Part Il: Will be released in the third week
e Submit your code along with the report to Github classroom

* No late days

Exams (35%o)

Written exams

Include questions from both lectures and labs

Midterm (15%): In week 8, during lecture hours
e Covers lecture content from week 1-6

* Covers the lab

Finals (20%): In week 14, during lecture hours
e Covers content from the whole course

* Covers the lab

13

Project (35%)

* Free to choose the topic

* Should be done in a group of 3—4

e Each project must finish within the semester with some tangible results

* Projects topics should be relevant to the OS and must be explicitly agreed by us
* Mid evaluation by week 8/9 to see the progress

* Final presentation on week 15 (last week of the lecture)

* Must submit the report and the code by the last week of the lecture

Some project ideas

* Scheduling: Adaptive application-defined scheduling

e Virtual memory: Time series application’s memory layout visualizaiton

* Virtual memory: Application-aware state machine replication

* Virtual memory / FS: Application-aware data prefetching

* Virtual memory / FS: Designing new page cache algorithms

* OS: Using speculation to speed up kernel operations

e Security: Intra-process isolation

* OWN: Your own project: New OS design, OS component design, finding issues

in Linux, using ML for OS operations

Projects: Proposal

* Due: October 8th (tentative)
* Format: 1 page, free writing
* Project proposal should include the following:
* Motivation and goal of your work
Problem you would like to solve (define clearly)
Brief summary of related work
- Your ideas to solve the problem

Research plan for the project

16

Academic honesty!

You are allowed to collaborate on everything in this course, BUT you must adhere

to the academic honesty policies of the university:

* You must not share or text about labs with others
* You must participate in collaboration
* You must not use someone else’s code / text in your solution for the lab

* You cannot force anyone to provide you the answer

Beware!

You will work on programming assignments (labs). Please work/review your

programming skills in the first two weeks by solving lab 0

Cheating and academic integrity violation will be reported. Each labs will be

checked for plagiarism. Please check the academic integrity policy of EPFL:

https://bit.ly/3BmfHJU

You will learn a lot in this course, but you will have to work from day one!

18

https://bit.ly/3BmfHJU

Focus of today’s lecture

e Course logistics and policy
* A brief primer on operating system

* Overview of OS design / architecture

19

Why should you care about operating systems?

OS is everywhere!

* Almost every device, from your smartwatch, your smart light bulb, to your

mobile phones, and laptops runs an operating system!

21

OS is everywhere!

* Almost every device, from your smartwatch, your smart light bulb, to your

mobile phones, and laptops runs an operating system!

* Every program you will write will run on an operating system!

<stdio.h>

<stdio.h>

<stdio.h>

int main(int argc, char *argv[])

{

char *input argv[1];
(1) {
printf("%s\n", input);
}

03

22

Why is it difficult to design an operating system?

1) So many different devices!

—

4 14"

o 25

MON, 29 OCTOBER

REAFOO

2CEW

,{,

m
il

i

24

2) Communicate across devices around the world!

Vs = I == Y%
’ o)) /i WY 1
N A s S 4
Y / ¢ adlh
. Y g > i
| . |

N

(1
=) ¢ \ b
X N \ -
1._ =;5\ ’ ‘N
4 TS - PN
- " — =
i

Each device has an operating Communicate over the
system Internet

[Interface across huge sets of devices! J

25

3) Bell’s law

Computers per person

1:10°

1:103

1:1

103:1

years

Number
crunching, data
storage, ML

Productivity,
interactivity

Streaming
from/to physical
world

A new device class every 10 years!

26

4) Computer performance trends

Latency Numbers Everyone Should Know

Operation Time in ns Time in ms (1ms = 1,000,000 ns)
L1 cache reference 1

Branch misprediction 3

L2 cache reference 4

Mutex lock/unlock 17

Main memory reference 100

Compress 1kB with Zippy 2,000 0.002
Read 1 MB sequentially from memory 10,000 0.010
Send 2 kB over 10 Gbps network 1,600 0.0016
SSD 4kB Random Read 20,000 0.020
Read 1 MB sequentially from SSD 1,000,000 1
Round trip within same datacenter 500,000 0.5
Read 1 MB sequentially from disk 5,000,000 |5

Read 1 MB sequentially from 1Gbps 10,000,000 10
network

Disk seek 10,000,000 |10

TCP packet round trip between 150,000,000 (150
continents

New timescales keep coming up with devices

5) Hardware is getting complicated over time

Hardware is becoming smarter

Better reliability and security

Better performance (more efficient

code, more parallel computation)

Better energy efficiency

i

/

1x16 PCle 5.0 Readiness g

lanes + 1x4 PCle 4.0 lanes 12% Gen %

® ™ %

2x8 PCle 5.0 Readiness lanes tel= Core %
X i

+ 1x4 PCle 4.0 lanes Processors %

_

Four Independent

DP/HDMI Display Support

Up t0 12 x PCI Express 4.0 (x8 DMI4.0)

16 Gb/s each x ‘l:

s
(8 Gl{/s E-.xch x1)

8 x SATA 6 Gb/s Ports; I [_%/,///%
SATA Port Disable e to] 7

/ %
pto / /
65~ |ntel'weso

Up to 4 x USB 3.2 Gen 2x2 Ports ¢
Upto 10xUSB 32 2x1 Ports Chipset 2
Up to 10x USB 3.2 1x1 Ports 7 /
14x USB 2.0 Ports , 7

SPI '_v}

Intel® 2.5G Base-T
MAC/PHY Ethernet

Intel® ME Firmware

Support for DDRS ECC Memory:

Up to 4800 MT/s

Support for DDR4 ECC Memory:
Up to 3200 MT/s

Intel® Optane™ Memory
with Solid State Storage

Intel® Smart Sound
Technology

Intel® High Definition Audio

Intel® Rapid Storage
Technology with RAID

\ ‘g\\\\\j

Intel® Rapid Storage
Technology for PCI
Express Storage

Intel® Integrated

10/100/1000 MAC Intel® Platform Trust

Technology

Intel® Extreme Tuning
Utility Support

{ Octa N ™
(pciex1) ((sMBus)

Intel® Ethernet Connection

Intel® Wi-Fi 6E AX211(Gig+)
CNVi solution or Intel® Wi-Fi 6E
AX210(Gig+)

28

What is an operating system?

An operating system ...

e A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

30

An operating system ...

e A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

HW
IO connection T $

A

31

An operating system ...

e A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

HW
T- e |:—\
|O connection T

A A

32

An operating system ...

e A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

e |mplements virtual machine that is easier to program than raw hardware

Physical machi Operating system

HW
T- e |:J
|O connection T

A A

interface

interface

33

An operating system ...

e A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

e |mplements virtual machine that is easier to program than raw hardware
Easier to use, simpler to code, more reliable, more secure ...

interface

Physical machi Operating system

HW
T- |
|O connection T

A

interface

A

34

What does an OS do for you?

* Abstract the hardware for convenience and portability
* Multiplex the hardware among multiple applications
* Isolate applications to contain bugs

* Allow sharing among applications

35

OS: Application view

* OS provides an execution environment for running programs in the form of
abstractions
* Typical OS abstractions
* Processor — Processes, threads
e Memory — Address space (virtual memory)
* Storage — files, directories
* |/O devices — Files (+ ioctls)

 Network — Files (socket, pipe ...)

Today’s OSes have several Unix features

* Process control
« fork(), exec(), wait(), exit()
- Pipes for interprocess communication (IPC)
* File systems
* Signals
* Shells
* Standard 10 and 10 redirection

- Shell scripts

37

OS: System view

 OS manages various hardware resources
* Several metrics might be considered:
* Sharing
Fairness

Efficiency

Throughput, latency, energy efficiency

38

OS: Implementation view

 OSis a highly concurrency program that manages both applications and

hardware

Both software and hardware interact with the OS via two events:

e System calls

Interrupts

System call

OS overview

User space

User

Kernel
mode

File System
Management

{

I/O Management
(device drivers)

|

—(

System call interface

Memory
management

Process
Management

IPC

Synchronization

|

Hardware control (interrupt handling etc.)
|

uoI132310.d

User space vs. kernel space

* A CPU executes either in user space or in kernel space
* Only the code running in the kernel mode is allowed to perform privileged
operations, such as controlling CPU or 10 devices

* Hardware provides architectural support to ensure isolation

* A user space application talks to the kernel using system call interface

 E.g., open(), read(), write(), close()

41

Architectural support for OS

Uses protection rings to distinguish among various modes of execution

> Kernel mode

User mode <«

Least privileged (Ring 3) Most privileged (Ring 0)

User mode: Processes Kernel mode: OS works in

work in this mode; CPU W this mode and executes
executes only limited set instructions without
of instructions — only S checks

- Direct 10 access
- Access system

x86 registers
- Memory state mgmt.

allowed ones!

Applications

Architectural support for OS ...

Trap entries Code to run when
S =P a hard disk
e |nterru ptS interrupt occurs
~
* Generated by hardware devices VORI e
X a keyboard
interrupt occurs
. Asynchronous N\
. Trap \\ Code to run for a
° Exceptlons table system call

* Generated by software executing instructions

e Faults (unintentional, but possibly recoverable): page faults, protection faults ...
e Traps (intentional): syscall instruction in x86

e Aborts (unintentional and unrecoverable): parity error, machine error
- Synchronous

- Exception handling logic is similar as interrupt handling

43

Architectural support for OS ...

* Memory protection
* Segmentation / paging

e Timer

DMA (direct memory access)

e Atomic instructions

44

System Call: Requesting OS operations!

User
mode

Kernel
mode

45

Requesting OS services (user mode — kernel mode)

* Processes can request OS services

through the system call API (example:
User
fork/exec/wait) mode Process

System call Return from
issued system call

,'\ Process
|
|
e System calls transfer execution tothe @ - ______L_____ .

0OS, meanwhile the execution of the Kernel

process is suspended mode

46

System calls

System calls exposes key functionalities
* Creating and destroying processes

* Accessing the file system

Allocating memory

Most OSes provide hundreds of system calls

* Linux currently has more than 300+

Communicating with other processes

seccomp
pselects readlinkat Ser‘\}I|Hkai
chown getdents accepty gmunmap
gete uid
fchown mboclall putpmsg IV beodot

connect« io_de: Mgetcpu
io_setu “3"“W exit_group . setregid
prllmlt64 P g‘ p mlock
securltyQ pwrltevmmap
9\5&» |hno(§|fy |tn|% i (2(/ & lock (<mm
, - b §§75\ 7 PR i Y 064 kexec_ ‘load
signalfdg, eyt § = 7 eneafe | t ey
= S MMM Y
alaion O gef sched_getparam i uuf$ (e} .
uselib _area linkepoll_create1 sysinfo
é” 2 timenr_delete %merfd _gettime °P7 A OO@ E e
semopw SO 5 : . uihad &&w&uf fsgid
fc,ym/ R %\fam&fg_man& - name_to_handle_at n shmget .
0dv % & (ucﬂ d
<k 64 sched_setscheduler %W%O Wetresgld
Igetp{lorlty tltmer gett}gmg: i ts?tlmedwalt/o 4 set_ robuist_ llstfmlv splice
select rt_sigreturn—"sched_setaffini "’@QS maduise
setmme| clogck adjtime tyq, e OA’U ‘9/; quma(tl

= .
uﬁm Yentty & sync_{jile_range§ Qs/ %46 ||sten
@ > Que, Q,
Mreiap \delete module 9&9"0‘1}’ u@,n [ON e a“o

~
chroot % o,
fentlmq-unbink ”‘7‘% M epoll Ctl trewd
shmat ; mq Umeaflbenc $'S S& §§>\Asched _get_ pI’IOth min"_ {locksync
r S|gqueue|no S Q /,cﬁg,{ inferval
unlinkat / ,Q w’d ftruncate !
semctl s \L— : request_key | o
IseekWsched getattr,o aCce exit § o motlfy_add Watch restart syscauv Gelss
setuidadd_key. Yinid. E Z SSat O~ 1,9 set_tid address " neadahea
ptrace Ce/ 50 W _vm_ready =
) oA " Urt_sigprocmask S Hcapset
P B3 < 5 g
ez imdie S 2‘: Wg 8 peguagel_mempolicy r¢ W‘W ¥ mprobect | 3 umask
76;"‘2{%2 < &tee “timer_gétoverrun . dup query_module ?"w%wf
el 10Y clock settime ;e .
Yo% epoll GEEhan . inotify-tm_wateh || . c etpair uname
= ioprio_ ge sethostname
sched_yield getrusage , execve
fchownat afs_syscall *Cjone ° 1
i removexattr getsockname swapoff

setdomainfname personality
get|t|mer setresgid lremovexattrsetpnomy

getrandom futimesat getegid
munlock gettid

47

Putting everything together for a system call

1. A system call is a trap instruction (syscall/ecall)
2. OS saves registers to per-process stack User P
mode Process |‘ ,'« rocess
3. Change mode from Ring 3 to Ring O ; ; Return-
trap | , from-
e o p___trae
4. Execute privileged operations Kernel Q oS ,'
mode
9. Change mode from RingOtoRings "~~~ "~""~""~"~""“""“""“""“""“"""7""7 'Fir_n;>

6. Restore the state of the process by popping

registers in the return from trap (iret)

48

Executing a privileged operation

-7 Application

Library

read()

User space < System call processing | Traditional

Virtual file system 0S design

File system

Kernel space

Block layer

CPUs, memory,

Device driver

IO devices

49

Traditional OS architecture: Monolithic kernel

* A traditional design: all of the OS operations run in kernel, privileged mode

Share the same address space

* |Kernel interface ~= system call interface

* Good:

Easy for subsystems to cooperate|(cache shared by FS and virtual memory)

Good performance

e Bad:

Dependencies between system components

Complex and huge; difficult to maintain due to large size

Leads to bugs, no isolation in the kernel

50

Let’s take a step back and think about systems

research and design in general

51

Systems research

* The study of tradeoffs
* Functionality vs. performance

E.g., where to place error checking

Are there principles or rules of thumb that can help with large system design?

52

What is system design?

Required Expected
functionality workload
“Logic” “User load”
Required Available
performance resources
“SLA” “Environment”

53

End-to-end principle

* Helps guide function placement among modules in a distributed system

* Argument

* Implement the functionality in the lower layer

« Alarge number of higher layers / applications use this functionality and implementing it at the

lower layer improves the performance of many of them,

AND

* Does not hurt remaining applications

ific |

54

Rely on system design hints: Why and Where

e Why:

* Functionality: does it work?

- Speed: is it fast enough?

- Fault-tolerance: does it keep working?
* Where:

 Completeness

- Interface

- Implementation

55

System design hints from Butler Lampson

Why?

Functionality
Does it work?

Speed
[s it fast enough?

Fault-tolerance
Does it keep working?

Where?

Completeness

Interface

Implementation

Separate normal and —[
worst case

Do one thing well:
Don’t generalize
Get it right
Don’t hide power
Use procedure arguments
Leave it to the client
Keep basic interfaces stable
Keep a place to stand

Plan to throw one away
Keep secrets

Use a good idea again
Divide and conquer

Shed load
End-to-end

Safety first

Make it fast

Split resources
Static analysis
Dynamic translation

Cache answers
Use hints

Use brute force
Compute in background
Batch processing

End-to-end

End-to-end
Log updates
Make actions atomic

Make actions atomic
Use hints

56

Another system design aspect: Policy vs. Mechanism

* Policy:
« What should be done?
Policy decisions must be made for all resource allocation and scheduling

problems
CPU scheduling: scheduling algorithm, quantum size, priority, etc.

* Mechanism:
* How to do something?
- The tool for implementing a set of policies
CPU scheduling: dispatcher for low-level context switching, priority queues

etc.

57

Separating Policy from Mechanism

* A key principle in OS design

Policies are likely to change depending on workloads, and also across places or
over time
* Each change in policy would require a change in the underlying mechanism
A general mechanism, separated from policy, is more desirable
* A change in policy would then require redefinition of only certain
parameters of the system instead of resulting in a change in the mechanism

* |tis possible to experiment with new policy without breaking mechanisms

58

Focus of today’s lecture

e Course logistics and policy
* A brief primer on operating system

e Overview of OS design / architecture

59

Traditional OS architecture: Monolithic kernel

* A traditional design: all of the OS operations run in kernel, privileged mode
* Share the same address space
* Kernel interface ~= system call interface
* Good:
* Easy for subsystems to cooperate (cache shared by FS and virtual memory)
Good performance
* Bad:
* Dependencies between system components
Complex and huge; difficult to maintain due to large size

e Leads to bugs, noisolation in the kernel

60

Different types of kernel designs

e Monolithic kernel
 Microkernel
* Hybrid kernel

 Exokernel

61

Alternative OS architecture: Microkernel

Minimalist approach
* |PC, virtual memory, thread scheduling
e Put the rest in the user space: device drivers, FS, paging in VM
* Kernel interface != system call interface
* Good:
 More stable with less services in kernel space
More isolation
* Bad:
* Lots of system calls and context switches

IPCs may be slow

62

Monolithic kernels vs. Microkernels

syscall

Application

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

User
mode

Kernel

mode

App | UNIX | Device | File
IZC server | driver serzer

IPC, virtual memory, scheduling

63

Alternative OS architecture: Hybrid kernels

* Combine the best of both worlds
* Speed and simple design of monolithic kernel
Modularity and stability of a microkernel
* Still similar to a monolithic kernel
* Disadvantages still apply here
 E.g., Windows NT, BeOS

64

Alternative OS architecture: Exokernels

* Follows end-to-end principle
* Extremely minimal
Fewest hardware abstractions as possible
- Just allocate physical resources to applications
* Disadvantages:
 More work for application developers

Difficult to reason about sharing

65

Summary

 OS manage hardware and software
* Abstracts resources, enables sharing and isolation of applications
* Provides basic set of abstractions on top of hardware
* Process, address space, files, etc.
* Several OS design possible based on end-to-end, policy vs mechanism
* Monolithic: All OS components in kernel space; complex
Microkernels: A minimal abstraction using IPC
Hybrid: Combination of both monolithic and microkernel

Exokernel: Extremely minimal; directly expose all resources to applications

