
CS 477:

Advanced Operating Systems
OS Design & Organization

• Course logistics and policy

• A brief primer on operating system

• Overview of OS design / architecture

2

Focus of today’s lecture

• Quick primer → Operating Systems: Three Easy Pieces

• Set of optional research papers for every week

• Course organization: Lecture, lab, exercises, project, written midterm and finals

• Staff email: cs477-staff@groupes.epfl.ch

• Instructors:

Sanidhya Kashyap, Yujie Ren

• Current TAs:

Yueyang Pan, Kumar Kartikeya Dwivedi, Lucas Cendez Lopes

3

General information

http://pages.cs.wisc.edu/~remzi/OSTEP
mailto:cs477-staff@groupes.epfl.ch

• OS architecture and design

• Processes and Threads

• Scheduling

• Virtual Memory

• Storage stack

• Concurrency

• Virtualization

• Security

4

Topics planned

5

• We will use multiple software platforms:

• Moodle: Links to software platforms you need to register

• ED: Communicate with the course staff and other students

• Github classroom: For submitting the lab

6

Software platforms

• The slides will be available before the class

• We will only have live lectures

• They will NOT be recorded

• You are expected to attend every lecture

Note:

• Non-overlapping: 21

• Lecture overlapping: 22

• Other overlapping: 8

7

Lectures

• The exercise session consists of:

• Set of subjective questions with answers discussed in the class

• No written solution will be released

• Students are expected to attend the exercise session to ask questions

8

Exercise sessions

• Wednesday 2–4 PM in INM 202

• TAs will be present to answer questions

9

Lab / project session

• Lecture notes: 5%

• Lab: 15%

• Exams: 35%

• Midterm: 15%

• Finals: 20%

• Project: 45%

10

Grading policy:

• 2–3 students work in a group to take notes of the class and write a report

• Must be submitted within a week

• We will release lecture sheet for people to sign up.

11

Lecture notes (5%)

• One lab

• Lab must be solved individually without using any help from AI assistants

• Will zero the whole lab in case we find it

• Duration: 4 weeks in total

• Part I: Already released

• Part II: Will be released in the third week

• Submit your code along with the report to Github classroom

• No late days

12

Lab (15%)

• Written exams

• Include questions from both lectures and labs

• Midterm (15%): In week 8, during lecture hours

• Covers lecture content from week 1–6

• Covers the lab

• Finals (20%): In week 14, during lecture hours

• Covers content from the whole course

• Covers the lab

13

Exams (35%)

• Free to choose the topic

• Should be done in a group of 3–4

• Each project must finish within the semester with some tangible results

• Projects topics should be relevant to the OS and must be explicitly agreed by us

• Mid evaluation by week 8/9 to see the progress

• Final presentation on week 15 (last week of the lecture)

• Must submit the report and the code by the last week of the lecture

14

Project (35%)

• Scheduling: Adaptive application-defined scheduling

• Virtual memory: Time series application’s memory layout visualizaiton

• Virtual memory: Application-aware state machine replication

• Virtual memory / FS: Application-aware data prefetching

• Virtual memory / FS: Designing new page cache algorithms

• OS: Using speculation to speed up kernel operations

• Security: Intra-process isolation

• OWN: Your own project: New OS design, OS component design, finding issues

in Linux, using ML for OS operations

15

Some project ideas

• Due: October 8th (tentative)

• Format: 1 page, free writing

• Project proposal should include the following:

• Motivation and goal of your work

• Problem you would like to solve (define clearly)

• Brief summary of related work

• Your ideas to solve the problem

• Research plan for the project

16

Projects: Proposal

You are allowed to collaborate on everything in this course, BUT you must adhere

to the academic honesty policies of the university:

• You must not share or text about labs with others

• You must participate in collaboration

• You must not use someone else’s code / text in your solution for the lab

• You cannot force anyone to provide you the answer

17

Academic honesty!

 You will work on programming assignments (labs). Please work/review your

programming skills in the first two weeks by solving lab 0

 Cheating and academic integrity violation will be reported. Each labs will be

checked for plagiarism. Please check the academic integrity policy of EPFL:

https://bit.ly/3BmfHJU

 You will learn a lot in this course, but you will have to work from day one!

18

Beware!

https://bit.ly/3BmfHJU

• Course logistics and policy

• A brief primer on operating system

• Overview of OS design / architecture

19

Focus of today’s lecture

20

Why should you care about operating systems?

• Almost every device, from your smartwatch, your smart light bulb, to your

mobile phones, and laptops runs an operating system!

21

OS is everywhere!

• Almost every device, from your smartwatch, your smart light bulb, to your

mobile phones, and laptops runs an operating system!

• Every program you will write will run on an operating system!

22

OS is everywhere!

23

Why is it difficult to design an operating system?

24

1) So many different devices!

25

2) Communicate across devices around the world!

Communicate over the
Internet

Interface across huge sets of devices!

Each device has an operating
system

26

3) Bell’s law

A new device class every 10 years!

years

103:1

1:1

1:103

1:106

Mainframe

Mini

Workstation

PC

Laptop

Cell

Number
crunching, data
storage, ML

Productivity,
interactivity

Streaming
from/to physical
world

C
o

m
p

u
te

rs
 p

er
 p

er
so

n

27

4) Computer performance trends

New timescales keep coming up with devices

28

5) Hardware is getting complicated over time

• Hardware is becoming smarter

• Better reliability and security

• Better performance (more efficient

code, more parallel computation)

• Better energy efficiency

29

What is an operating system?

An operating system …

Operating system

● A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

30

An operating system …

Operating system

● A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

Processor Memory Storage

IO connection

HW

31

An operating system …

Operating system

App App App

● A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

Processor Memory Storage

IO connection

HW

32

An operating system …

Operating system

App App App

● A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

● Implements virtual machine that is easier to program than raw hardware

Processor Memory Storage

IO connection

HW
Physical machine

interface

OS
interface

33

An operating system …

Operating system

App App App

● A software layer that interfaces between diverse hardware resources and one or
many applications running on the machine

● Implements virtual machine that is easier to program than raw hardware

Easier to use, simpler to code, more reliable, more secure …

Processor Memory Storage

IO connection

HW
Physical machine

interface

OS
interface

34

• Abstract the hardware for convenience and portability

• Multiplex the hardware among multiple applications

• Isolate applications to contain bugs

• Allow sharing among applications

35

What does an OS do for you?

• OS provides an execution environment for running programs in the form of

abstractions

• Typical OS abstractions

• Processor → Processes, threads

• Memory → Address space (virtual memory)

• Storage → files, directories

• I/O devices → Files (+ ioctls)

• Network → Files (socket, pipe …)

36

OS: Application view

• Process control

• fork(), exec(), wait(), exit()

• Pipes for interprocess communication (IPC)

• File systems

• Signals

• Shells

• Standard IO and IO redirection

• Shell scripts

37

Today’s OSes have several Unix features

• OS manages various hardware resources

• Several metrics might be considered:

• Sharing

• Fairness

• Efficiency

• Throughput, latency, energy efficiency

38

OS: System view

• OS is a highly concurrency program that manages both applications and

hardware

• Both software and hardware interact with the OS via two events:

• System calls

• Interrupts

39

OS: Implementation view

trap

Hardware

System call

Interrupts

40

OS overview

User space
System call interface

Memory
management

Hardware

Hardware control (interrupt handling etc.)

Process
Management

Scheduler

IPC

Synchronization

P
ro

tectio
n

File System
Management

I/O Management
(device drivers)

App App AppUser
mode

Kernel
mode

• A CPU executes either in user space or in kernel space

• Only the code running in the kernel mode is allowed to perform privileged

operations, such as controlling CPU or IO devices

• Hardware provides architectural support to ensure isolation

• A user space application talks to the kernel using system call interface

• E.g., open(), read(), write(), close()

41

User space vs. kernel space

42

Architectural support for OS
Uses protection rings to distinguish among various modes of execution

Device drivers

Device drivers

Kernel

Applications

Ring 0

Ring 1

Ring 2

Ring 3User mode Kernel mode

Least privileged (Ring 3) Most privileged (Ring 0)

User mode: Processes
work in this mode; CPU
executes only limited set
of instructions – only
allowed ones!

Kernel mode: OS works in
this mode and executes
instructions without
checks
- Direct IO access
- Access system

registers
- Memory state mgmt.

x86

43

Architectural support for OS …

• Interrupts

• Generated by hardware devices

• Asynchronous

• Exceptions

• Generated by software executing instructions

• Faults (unintentional, but possibly recoverable): page faults, protection faults …

• Traps (intentional): syscall instruction in x86

• Aborts (unintentional and unrecoverable): parity error, machine error

• Synchronous

• Exception handling logic is similar as interrupt handling

Code to run when
a hard disk
interrupt occurs

Code to run when
a keyboard
interrupt occurs

Code to run for a
system call

Trap
table

Trap entries

44

Architectural support for OS …

• Memory protection

• Segmentation / paging

• Timer

• DMA (direct memory access)

• Atomic instructions

45

System Call: Requesting OS operations!

Operating system kernel mode executes

User process executes

Kernel
mode

User
mode

46

Requesting OS services (user mode → kernel mode)

• Processes can request OS services

through the system call API (example:

fork/exec/wait)

• System calls transfer execution to the

OS, meanwhile the execution of the

process is suspended
OSKernel

mode

User
mode Process Process

System call
issued

Return from
system call

Time

47

System calls

System calls exposes key functionalities:

• Creating and destroying processes

• Accessing the file system

• Communicating with other processes

• Allocating memory

Most OSes provide hundreds of system calls

• Linux currently has more than 300+

48

Putting everything together for a system call

OS
Kernel
mode

User
mode Process

trap

Time

Process

1. A system call is a trap instruction (syscall/ecall)

2. OS saves registers to per-process stack

3. Change mode from Ring 3 to Ring 0

4. Execute privileged operations

5. Change mode from Ring 0 to Ring 3

6. Restore the state of the process by popping

registers in the return from trap (iret)

Return-
from-
trap

49

Executing a privileged operation

Application

Library

System call processingUser space

Kernel space

CPUs, memory,
IO devices

Virtual file system

File system

Block layer

Device driver

read()

Traditional
OS design

50

Traditional OS architecture: Monolithic kernel

• A traditional design: all of the OS operations run in kernel, privileged mode

• Share the same address space

• Kernel interface ~= system call interface

• Good:

• Easy for subsystems to cooperate (cache shared by FS and virtual memory)

• Good performance

• Bad:

• Dependencies between system components

• Complex and huge; difficult to maintain due to large size

• Leads to bugs, no isolation in the kernel

51

Let’s take a step back and think about systems
research and design in general

52

Systems research

• The study of tradeoffs

• Functionality vs. performance

• E.g., where to place error checking

Are there principles or rules of thumb that can help with large system design?

53

What is system design?
Required

functionality
“Logic”

Expected
workload

“User load”

Required
performance

“SLA”

Available
resources

“Environment”

Something to do with abstraction (interface + policy) & layering

Need a balance between functionality & required perf / SLA

54

End-to-end principle

• Helps guide function placement among modules in a distributed system

• Argument

• Implement the functionality in the lower layer

• A large number of higher layers / applications use this functionality and implementing it at the

lower layer improves the performance of many of them,

AND
• Does not hurt remaining applications

Difficult to reason as computer systems are complex

55

Rely on system design hints: Why and Where

• Why:

• Functionality: does it work?

• Speed: is it fast enough?

• Fault-tolerance: does it keep working?

• Where:

• Completeness

• Interface

• Implementation

56

System design hints from Butler Lampson

57

Another system design aspect: Policy vs. Mechanism

• Policy:

• What should be done?

• Policy decisions must be made for all resource allocation and scheduling

problems

• CPU scheduling: scheduling algorithm, quantum size, priority, etc.

• Mechanism:

• How to do something?

• The tool for implementing a set of policies

• CPU scheduling: dispatcher for low-level context switching, priority queues

etc.

58

Separating Policy from Mechanism

• A key principle in OS design

• Policies are likely to change depending on workloads, and also across places or

over time

• Each change in policy would require a change in the underlying mechanism

• A general mechanism, separated from policy, is more desirable

• A change in policy would then require redefinition of only certain

parameters of the system instead of resulting in a change in the mechanism

• It is possible to experiment with new policy without breaking mechanisms

• Course logistics and policy

• A brief primer on operating system

• Overview of OS design / architecture

59

Focus of today’s lecture

60

Traditional OS architecture: Monolithic kernel

• A traditional design: all of the OS operations run in kernel, privileged mode

• Share the same address space

• Kernel interface ~= system call interface

• Good:

• Easy for subsystems to cooperate (cache shared by FS and virtual memory)

• Good performance

• Bad:

• Dependencies between system components

• Complex and huge; difficult to maintain due to large size

• Leads to bugs, no isolation in the kernel

• Monolithic kernel

• Microkernel

• Hybrid kernel

• Exokernel

61

Different types of kernel designs

62

Alternative OS architecture: Microkernel

• Minimalist approach

• IPC, virtual memory, thread scheduling

• Put the rest in the user space: device drivers, FS, paging in VM

• Kernel interface != system call interface

• Good:

• More stable with less services in kernel space

• More isolation

• Bad:

• Lots of system calls and context switches

• IPCs may be slow

63

Monolithic kernels vs. Microkernels

Hardware

Application

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

App
IPC

IPC, virtual memory, scheduling

UNIX
server

Device
driver

File
server

Kernel
mode

User
mode

syscall

64

Alternative OS architecture: Hybrid kernels

• Combine the best of both worlds

• Speed and simple design of monolithic kernel

• Modularity and stability of a microkernel

• Still similar to a monolithic kernel

• Disadvantages still apply here

• E.g., Windows NT, BeOS

65

Alternative OS architecture: Exokernels

• Follows end-to-end principle

• Extremely minimal

• Fewest hardware abstractions as possible

• Just allocate physical resources to applications

• Disadvantages:

• More work for application developers

• Difficult to reason about sharing

66

Summary

• OS manage hardware and software

• Abstracts resources, enables sharing and isolation of applications

• Provides basic set of abstractions on top of hardware

• Process, address space, files, etc.

• Several OS design possible based on end-to-end, policy vs mechanism

• Monolithic: All OS components in kernel space; complex

• Microkernels: A minimal abstraction using IPC

• Hybrid: Combination of both monolithic and microkernel

• Exokernel: Extremely minimal; directly expose all resources to applications

