
CS 477:

Advanced Operating Systems
Security

• OS security importance

• Balancing flexibility of security with performance using FlexOS

2

This week

3

OS security goals
• Traditionally: enabling multiple users to securely share a computer

• Separation and sharing of processes, memory, files, devices, etc.

• What is the threat model?
• Users may be malicious, users have terminal access to computers, software may be

malicious/buggy, and so on

• Security mechanisms
• Memory protection

• Processor modes

• User authentication

• File access control

4

OS security goals
• Nowadays: ensure secure operation in networked environment

• What is the threat model?

• Security mechanisms
• Authentication

• Access Control

• Secure Communication (using cryptography)

• Logging & Auditing

• Intrusion Prevention and Detection

• Recovery

5

Security: reconcile isolation and sharing
• Ensure separation:

• Physical: system, data physically isolated; Rely on separate hardware
• Prevents unauthorized access that requires physical presence to breach security

• Temporal: Allow different time period for execution
• Prevents interference by ensuring that only one entity has access or control at a time

• Logical: VMs
• Provides isolation without requiring separate physical infrastructure, making it more

cost-effective and scalable

• Cryptographical: Use encryption for ensuring data access only to authorized parties
• Ensures data confidentiality and integrity, even if the underlying physical or logical

infrastructure is shared

• OS also needs to ensure sharing

Abstract view of system components

6

● Ensures that one user’s process cannot access other’s memory
○ relocation
○ base/bounds register
○ segmentation
○ paging
○ …

● Operating system and user processes need to have different privileges
● CPU modes: user mode vs kernel mode

○ Rely on system calls to transition from the user mode to the kernel mode

Memory protection: access control to mem

7

● A reference monitor mediates all access to resources

○ Principle: Complete mediation: control all accesses to resources

Resource
User

process

Reference
monitor

access request

policy

?

Access control

8

U r w
own

V

F
S
u
b
j
e
c
t
s

Objects (and Subjects)

r w
own

G

r

rights

Access matrix model

9

10

Access matrix model
• Basic abstractions:

• Subjects

• Objects

• Rights

• The rights in a cell specify the access of the subject (row) to the object (column)

11

Principals and subjects
A subject is a program (application) or an active entity that performs actions on resources
in a system on behalf of a principal

A principal is an identifiable entity that can make requests to access resources in a system

○ Principals are often associated with users, roles, or even services, applications, or
systems that interact with resources.

Example:

• If “Alice” logs into a system and uses a browser to interact with a web application,
Alice is the principal, and the browser session acting on her behalf is the subject

• If a service account is used by an automated script to query a database, the service
account is the principal, and the script is the subject

12

Unix access control: users/group/files/proc
• Each user account has a unique ID

• A user account belongs to multiple groups

• Subjects are processes

• Associated with uid/gid

• Objects are files

13

Objects
● An object is anything on which a subject can perform operations (mediated by

rights)
● Usually objects are passive, for example:

○ File
○ Directory (or Folder)
○ Memory segment

● But, subjects (i.e. processes) can also be objects, with operations performed on
them
○ kill, suspend, resume, send interprocess communication, etc.

14

Unix access control: users/group/files/proc
• Each user account has a unique ID

• A user account belongs to multiple groups

• Subjects are processes

• Associated with uid/gid

• Objects are files

15

Object organization
• Almost all objects are organized as files

• Files are arranged in hierarchy

• Files exist in directory

• Directories are also one type of file

• Each object has

• Owner

• Group

• 12 permission bits

• RWX for owner, group, and others (3x3)

• suid, sgid, sticky

16

Basic permission bits on files (non-directories)
• Read controls reading the content of a file

• i.e., the read system call

• Write controls changing the content of a file

• i.e., the write system call

• Execute controls loading the file in memory and execute

• i.e., the execve system call

17

Permission bits on directories
• Read bit allows one to show file names in a directory

• The execution bit controls traversing a directory
• does a lookup, allows one to find inode # from file name

• chdir to a directory requires execution

• Write + execution control creating/deleting files in the directory
• Deleting a file under a directory requires no permission on the file

• Accessing a file identified by a path name requires execution to all directories
along the path

18

The three sets of permission bits
• Intuition:

• if the user is the owner of a file, then the r/w/x bits for owner apply

• Otherwise, if the user belongs to the group the file belongs to, then the r/w/x bits

for group apply

• Otherwise, the r/w/x bits for others apply

• Can one implement negative authorization, i.e., only members of a particular

group are not allowed to access a file?

19

Other issues on objects in UNIX
● Accesses other than read/write/execute

○ Who can change the permission bits?
■ The owner can

○ Who can change the owner?
■ Only the superuser

● Rights not related to a file
○ Affecting another process
○ Operations such as shutting down the system, mounting a new file system,

listening on a low port
■ Traditionally reserved for the root user

20

Process user ID model in Modern UNIX
● Each process has three user IDs

○ real user ID (ruid) owner of the process

○ effective user ID (euid) used in most access control decisions

○ saved user ID (suid) stores the original elevated privileges

● And three group IDs

○ real group ID

○ effective group ID

○ saved group ID

21

Process user ID model in Modern UNIX
● When a process is created by fork

○ it inherits all three users IDs from its parent process

● When a process executes a file by exec

○ it keeps its three user IDs unless the set-user-ID bit of the file is set, in which
case the effective uid and saved uid are assigned the user ID of the owner of
the file

● A process may change the user IDs via system calls

22

Needing suid/sgid bits
● Some operations are not modeled as files and require user id = 0

○ halting the system
○ bind/listen on “privileged ports” (TCP/UDP ports below 1024)
○ non-root users need these privileges

login

pid 2235

euid 0

ruid 0

suid 0

login

pid 2235

euid 500

ruid 500

suid 500

setuid(500)

After the login process
verifies that the
entered password is
correct, it issues a
setuid system call.

bash

pid 2235

euid 500

ruid 500

suid 500

exec(“bash”)

The login process
then loads the
shell, giving the
user a login shell.

fork()

The user types in
the passwd
command to
change his
password.

Events during logging

23

bash

pid 2235

euid 500

ruid 500

suid 500

bash

pid 2297

euid 500

ruid 500

suid 500

passwd

pid 2297

euid 0

ruid 500

suid 0

exec(“passwd”)

The fork call creates a new process, which
loads “passwd”, which is owned by root
user, and has setuid bit set.

passwd

pid 2297

euid 500

ruid 500

suid 0

passwd

pid 2297

euid 500

ruid 500

suid 500

Drop privilege
temporarily

Drop privilege
permanently

24

• OS security importance

• Balancing flexibility of security with performance using FlexOS

25

This week

26

OS designs have fixed security definitions
• OS security/isolation strategies are fixed at design time!

• Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

27

FlexOS: flexible OS isolation
• Decouple security/isolation decisions from the OS design

28

Other use cases for flexible OS isolation
• Deployment to heterogeneous hardware

• Make optimal use of each machine/architecture's safety mechanisms with the

same code

• Quickly isolate vulnerable libraries

• React easily and quickly to newly published vulnerabilities while waiting for a full

patch

• Incremental verification of code-bases

• Mix and match verified and non-verified code-bases while preserving guarantees

29

Realizing FlexOS
1. Focus on single-purpose applications such as cloud microservices

Running more applications leads to lesser specialization

2. Full-system understanding of compartmentalization

Consider every component, i.e., both kernel and the application

Embrace the library OS philosophy, everything is a library

3. Abstract away the technical details of isolation mechanisms

Page table, MPK, Cheri, TEE? One can design similar interface for them

4. Flexibility must not get into the way of performance

30

Overview of FlexOS

31

MPK primer
• Support fast permission change for page groups with

single instruction

• Fast single invocation; Fast permission change for

multiple pages

• Tags pages with PKEY

• Permission register (PKRU): 16 MPK regions

• Provides fast read/write permission change

• 11-260 cycles

Overview of FlexOS

32

33

• Virtualization is the backbone of today’s computing infrastructure

• Hardware provides support for efficient virtualization

• CPU, memory, IO

• VMs provide:

• Strong isolation

• And also lightweight: 2–200 ms instantiation times, memory footprint of 10s of

MBs

• Achieved through:

• Lightweight guests

• Re-architected VM control plane

 Mechanism abstraction in FlexOS

34

Gate
A mechanism to controlled access to certain critical resources or operations,

i.e., secure transitions between operations

• Interrupt gate: Transfers control to an interrupt handler with disabled

interrupts

• Trap gate: Similar to interrupt gate but allows further interrupts

• Call gate: Allows controlled transfer of execution to a higher privilege level

35

Compartmentalization toolchain
int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] attribute ((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app 0

Replace with shared heap allocation
Replace with MPK gate

1

36

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

attribute
((flexos_share));

int rc, connfd;
char buf[512]
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Automatic gate
instantiation at
build time Coccinelle1

int rc, connfd;
lwip

char *buf[512] = shared_malloc(512);
app 0

/* … */

rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

lwip + app

Replace with shared heap allocation
Replace with MPK gate

Compartmentalization toolchain

Replace with
normal stack
allocation

Replace with
function call

FlexOS prototype
• Implemented on top of Unikraft

• Backend implementation for Intel MPK, and VMs (EPT)

• Port of libraries: network, storage, scheduler, file system, time subsystem

• Applications: Redis, Nginx, SQLite, iPerf server

37

Flexibility

38

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image

(only a subset for readability):

• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

Flexibility

39

Runtime performance with Redis in requests/s One configuration and its associated performance
(80 configurations in total)

FlexOS libraries used in the Redis image

(only a subset for readability):

• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

Flexibility

40

Runtime performance with Redis in requests/s One configuration and its associated performance
(80 configurations in total)

The color of boxes indicates the compartment:

FlexOS libraries used in the Redis image

(only a subset for readability):

• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

Compartment 3Compartment 1 Compartment 2

Flexibility

41

Runtime performance with Redis in requests/s One configuration and its associated performance
(80 configurations in total)

The color of boxes indicates the compartment:

FlexOS libraries used in the Redis image

(only a subset for readability):

• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

Compartment 3Compartment 1 Compartment 2

Hardening on Hardening off

dot whether hardening (ASan, Safestack, etc.) is enabled:

1.2M requests/s292K requests/s
1

Large safety / performance space!

(4x)

Compartment 3Hardening on Hardening off Compartment 1 Compartment 2
42

Flexibility

1.2M requests/s292K requests/s
1

Large safety / performance space!

(4x)

2
Smooth slope, performance degrades

gracefully

Compartment 3Hardening on Hardening off Compartment 1 Compartment 2
43

Flexibility

3
Similar performance, very different properties!

need to reason about communication patterns, fast paths

Compartment 3Hardening on Hardening off Compartment 1 Compartment 2
44

Flexibility

3
Similar performance, very different properties!

need to reason about communication patterns, fast paths

Compartment 3Hardening on Hardening off Compartment 1 Compartment 2
45

Flexibility

lwip

uksche
d

...

lwip

uksched

...

3
Similar performance, very different properties!

need to reason about communication patterns, fast paths

Compartment 3Hardening on Hardening off Compartment 1 Compartment 2
46

Flexibility

lwip

uksche
d

...

lwip

uksched

...

Performance-wise:

=

2 crossings

2 crossings

3
Similar performance, very different properties!

need to reason about communication patterns, fast paths

Compartment 3Hardening on Hardening off Compartment 1 Compartment 2
47

Flexibility

lwip

uksche
d

...

lwip

uksched

...

Performance-wise:

=

2 crossings

2 crossings

3
Similar performance, very different properties!

need to reason about communication patterns, fast paths

You can get some safety for
free by exploring intelligently

Compartment 3Hardening on Hardening off Compartment 1 Compartment 2
48

Flexibility

ASan
lwip

ASan
uksched

nginx

... uksched

nginx

...

ASan
lwip

SafeStack

49

>
<

=

Exploring the design space

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a

given

performance budget!
Problem: some configurations are not comparable

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a

given

performance budget!
Problem: some configurations are not comparable

ASan
lwip

ASan
uksched

nginx

... uksched

nginx

...

ASan
lwip

SafeStack

50

>
<

=

How can we reason about
security/performance
trade-offs?

Exploring the design space

51

ASAN primer
• AddressSanitizer (ASan) detects memory errors by placing red zones around

objects and checks those objects on trigger events

• Out-of-bounds accesses to heap, stack and globals, use-after-free,

use-after-return (configurable), use-after-scope (configurable) double-free,

invalid free, memory leaks

• Mechanism: Uses “shadow memory” to track memory access validity, providing

detailed memory reports when violation occur

• Typical slowdown introduced by AddressSanitizer is 2x

52

SafeStack primer
• Prevents stack-based buffer overflows by isolating critical data like the return

address from the regular stack

• Mechanism: Allocate a separate “safe stack” region that stores sensitive data,

preventing unauthorized access from malicious code attempting to overwrite

the stack

• Less overhead than ASAN

53

What we propose: consider configurations as a

partially ordered set (poset)

Exploring the design space

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

What we propose: consider configurations as a

partially ordered set (poset)

...

...
54

Exploring the design space

-
-

ASan
-

-
ASan

SafeStack
-

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
ASan

SafeStack
ASan

SafeStack

What we propose: consider configurations as a

partially ordered set (poset)

...
ASan

- ASan
ASan

SafeStack

SafeStack ASan
SafeStack...

55

Exploring the design space

What we propose: consider configurations as a

partially ordered set (poset)

-
-

ASan
-

-
ASan

SafeStack
-

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
ASan

SafeStack
ASan

SafeStack

...

Two configurations that do not share a
path are simply not comparable

Both
ASan

SafeStack
Both

ASan
- ASan

ASan

SafeStack

SafeStack ASan
SafeStack...

56

Exploring the design space

We can then label each node with performance

characteristics (in practice no need to label everything)

-
-

ASan
-

-
ASan

SafeStack

Both
ASan

Both Both ASan

BothASan

ASan
SafeStack

...

22

19

ASan
1719

20

16

12

SafeStack
09

Both

11 07

Fictive numbers here

- BothSafeStackSafeStack
SafeStack19

SafeStack 11
ASan

... SafeStack
57

17

17

04

Exploring the design space

Based on this ordering and labeling we can choose the
last node of each path that satisfies the performance
constraints

-
-

ASan
-

-
ASan

Both
ASan

SafeStack

Both
Both

ASan
ASan

ASan
Both ASan

SafeStack

...

22

19

19

SafeStack

17
12

09

04

Both
SafeStack

SafeStack

- BothSafeStack

19

SafeStack 11
ASan

... SafeStack

17

20

16

11 07

11

Exploring the design space

58

Based on this ordering and labeling we can choose the
last node of each path that satisfies the performance
constraints

-
-

ASan
-

-
ASan

-

SafeStack

Both
ASan

SafeStack
Both

SafeStack Both

Both
Both

ASan
ASan

ASan

SafeStack

ASan
11

Both

SafeStack

SafeStack

...

22

19

19

SafeStack

19

17
12

09

04

ASan

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do
the final choice

... SafeStack
59

11 07

11

17

20

16

Exploring the design space

Based on this ordering and labeling we can choose the
last node of each path that satisfies the performance
constraints

-
-

ASan
-

-
ASan

-

SafeStack

Both
ASan

SafeStack
Both

SafeStack Both

Both
Both

ASan
ASan

ASan

SafeStack

ASan
11

Both

SafeStack

SafeStack

...

22

19

19

SafeStack

19

17
12

09

04

ASan

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do
the final choice

... SafeStack
60

No need to evaluate everything!

07

11

17

20

16

11

Exploring the design space

redis+newlib
+sched+lwip

redis+newlib+sched
/ lwip

dis+newlib+lwip / sched

redis+newlib
/ sched+lwip

redis+newlib
/ sched / lwip

61

B
A D

C
E

Reduction of 80 configurations to 5 candidates

Applying POSet to Redis

Summary
• Security is now the first class citizen

• Different types of security mechanisms

• Providing performance and isolation is now critical

• FLexOS provides a design point

• Focuses on compartmentalization

• Requires heavy compiler support

62

