CS 477:

Advanced Operating Systems

Virtualization

This week

* Virtualization
« CPU
* Memory
* 10

* Paper: My VM is Lighter (and safer) than your Container

What is virtualization?

Process of presenting and partitioning computing resources in a logical way rather

than what is dictated by their physical reality

* Extend or replace an existing interface to mimic the behavior of another system

* For portability, flexibility ...

Traditional OS vs virtual machines (VMs)

Kernel

B [o e T ISy,
Hvpervisor

Traditional OS Virtual machine

Traditional OS vs virtual machines (VMs)

Virtual machine: An execution
environment identical to a
physical machine, with the

ability to execute a full OS

process: 05 : 05 —_—

Virtualization layer (Virtual

machine monitor, VMM, or

hypervisor) Virtual machine

History

* Virtual machines were popular in 60s-70s
* Share resources of mainframe computers [Goldberg 1974]
* Run multiple single-user OSes

* Interest lost in 80s-90s’
* Development of multi-user OS

e Rapid drop in hardware cost

Virtualization

e What is virtualization?
— Virtualization is a way to run multiple operating systems and user applications on the same

hardware
— Virtual Machine Monitor (Hypervisor) is a software layer that allows several virtual machines to run

on a physical machine

e Types of VMMs
— Type-1: hypervisor runs directly on hardware

— Type-2: hypervisor runs on a host OS Type 2

Guest

j}>

Type 1

Guest

{

Xen, VMware ESX, Microsoft Hyper-V

KVM, VMware Workstation, Sun VirtualBox, QEMU

e Virtual Machine Monitor (VMM) = Hypervisor = Host OS
e Virtual Machine (VM) = Guest OS

Virtualization advantages

— lsolation
e Limits security exposures
e Reduces spread of risks
— Roll-Back
e Quickly recovers from security breaches
— Abstraction
e Limits direct access to hardware
— Portability
e Disaster recovery
e Switches to “standby” VMs
— Deployment
e Distributes workloads
e Customizes guest OS security settings

Virtualization types

Applications

Server virtualization
e GreenlT
e Xen, VMware ESX Server

Desktop virtualization

e VMware, VirtualBox, Citrix’s Xen HDX

Mobile virtualization
e Secure execution
e Xen on ARM
Cloud computing
e Storage/platform cloud services

e Amazon EC2, MS Azure, Google AppEngine

Emulation
¢ iPhone/Android emulator
e Qemu, Bochs

in®™ ——

L % P L A ¢

virtudiLogix = =
1 /Y wWQare -
(Sl vwn force.com

penvZz m
<%> parascale [ﬁﬁ)

Gsisa HParallels ohyursczz
— enomaly

<relastra E Ul oORACLE

@ BUNGEEconsvect fll powervm virtualiron

Processor virtualization

Classic virtualization
— Trap & Emulate

e For an architecture to be virtualizable, all sensitive instructions must be handled by VMM

Normal Instruction
' Normal Instruction
Normal Instruction

"‘ U'Gp . - 5
{jSe_nsitive Instﬁuction
— Sensitive instructions include Honlinsbetion
. . Normal Instruction
e Instruction that changes processor mode Normal Instruction

e Instruction that accesses hardware directly
¢ Instruction whose behavior is different in user/kernel mode

-Em.ulatibnlsrocedure()

10

x86 1s not virtualizable

 Some instructions (sensitive) read or update the state of VM and don’t trap (non-privileged)

* 17 sensitive, non-privileged instructions

Group Instructions
Access to interrupt flag pushf, popf, iret
Segment manipulation instructions pop <seg>, push <seg>, mov <seg>
Read-only access to privileged instructions sgdt, sldt, sidt, smsw
Interrupt and gate instructions fcall, longjump, retfar, str, int <n>

« popf doesn’t update interrupt flag (IF)

* Impossible to detect when guest disables interrupts

* push 7%cCs can read code segment selector (%CS) and learn its CPL

* QGuest gets confused

11

Processor virtualization (cont’d)

Para-virtualization

Requires modifications to the guest OS
e Guest is aware that it is running on a VM
Example

¢ |nstead of doing “cli” (turn off interrupts), guest OS
should do hypercall(DISABLE_INT)

Pros

e Near-native performance

e No hardware support required
Cons

e Requires specifically modified guest
Solutions : Xen

Guest Hypercall(DISABLE_INT)
\‘
Hypervisor [cli
Hardware

| EFLAGS register

12

Processor virtualization (cont’d)

e Full-virtualization
— Emulation

Process of implementing the interface and
functionality of one system on a different
system

Do whatever the CPU does, but in software

CPU emulation
— Fetches and decodes the next instruction
— Executes using the emulated registers and memory

Pros
— No hardware support required
— Simple

Cons
— Very slow

Solutions : Bochs

addl %ebx, %eax

unsigned long regs[8];
regs[EAX] += regs[EBX];

13

Processor virtualization (cont’d)

e Full-virtualization

— Binary translation
e Translates code block to safe code block (like JIT) directly

e Dynamically translates privileged instructions to normal
instructions which can be executed in user mode
Pros

— No hardware support required

— Fast
e Cons

— Hard to implement
» VMM needs x86-to-x86 binary compiler

e Solutions : VMware, QEMU

JIT : just in time compilation

14

Processor virtualization (cont’d)

e Full-virtualization

— Hardware-assisted virtualization
e Runs the VM directly on the CPU

Virtual Machines (VMs)

— No emulation
Ring 3 pps PPS
e |Integrates new execution mode intothe CPUby =~ | = —— B s - |
extending the instruction set and control structure pjng 0 DS DS
® Pros S I A
_ East VM Exit VM Entry
e Cons \Iécl\)/lcifc rVVM Monitor (VMM)
— Need hardware support
» AMD SVM
» Intel VT

e Solutions : KVM, Xen

AMD SVM : Secure Virtual Machine
Intel VT : Virtualization Technology 15

Intel VMX

VMX(Virtual Machine Extension) supports virtualization of processor hardware.

Two new VT-x operating modes

— Less-privileged mode

(VMX non-root) for guest OSes . .
— More-privileged mode Virtual Machines (VMs)

(VMX root) for VMM
Two new transitions .
Ring 3 pps ppS
— VM entry to non-root operation
— VM exit to root operation
Ring 0 0S 0S
. . . I A
Execution controls determine when exits occur Y I
— Access to privilege state, occurrence of exceptions, etc. VM Exit VM Entry
— Flexibility provided to minimize unwanted exits VMX VM Monitor (VMM)
Root

VM Control Structure (VMCS) controls VMX operation

— Also holds guest and host state

Processor virtualization (cont’d)

e Comparison

Modified Guest

Modified Guest

User Application

User Application

Modified OS

Modified OS

/

G

Hypercall Interface

Virtual Machine Monitor

Guest

Guest

User Application

User Application

Native OS

Native OS

N\ '
Guest
[User Application
User [T ——
Application B
[Virtual Machine Monitor

J/

Hardware

Operating System

Virtual Machine Monitor

Para-virtualization

Hardware

Full-virtualization

(Emulation, Binary Translation)

Hardware

(Intel VT, AMD SVM support)

Full-virtualization
(Hardware-assisted VT)

17

Processor virtualization (cont’d)

e Comparison

Para- Full- Full- Full-
virtualization virtualization virtualization virtualization
(Emulation) (Binary translation) (Hardware-assisted
VT)
Speed Very Fast Very Slow Fast Fast
(Almost Native)
Guest Kernel Yes No No No
Modification
Support No Yes No No
Other Arch
Solutions Xen, Bochs VMWare, QEMU KVM, Xen
VMWare ESX
Purposes Server virtualization Emulator Desktop virtualization Desktop

virtualization

18

VM memory map

Host Host Guest Guest
Physical Memory Virtual Memory Physical Memory Virtual Memory

19

Memory virtualization

Direct Paging

Guest OS directly maintains a mapping of Guest Virtual Address to Host Physical Address (GVA @@ HPA).
When a logical address is access, the hardware walks these page tables to determine the corresponding physical address.
Dedicated physical memory region is allocated at the initialization of guest OS.
Pros
e Simple to implement
e High performance (no virtualization overhead)

Cons

e Need to modify guest kernel (not applicable to closed-source OS)
¢ Inflexible memory management

i B 4 R
Virtual Machine 1 Virtual Machine 2
Process 1 Process 2 Process 1 Process 2)
Guest Vir-
llllll llllll llllll llllll
___________ dress

(GVA)

Phy5|cal
Address
(HPA)

20

Memory virtualization (cont’d)

Shadow Paging

VMM maintains GVAii@GPA mappings in its internal data structures and stores GVAiﬁ@ HPA
mappings in shadow page tables that are exposed to the hardware.

The VMM keeps these shadow page tables synchronized to the guest page tables.
This synchronization introduces virtualization overhead when the guest updates its page tables.

Pros

e Support unmodified guest OS

Cons
e Hard

to implement and maintain

e Large virtualization overhead

-

Virtual Machine 1

Process 1 Process 2

Virtual Machine 2

Process 1 Process 2

-
‘—

Phy5|cal
Address
(HPA)

Guest Vir-
tual Ad-
dress
(GVA)

21

Shadow paging

. 7]
. 7 Y e
’ -,
s’ -
’’ e
V4 * /
~
~
~
~
~
~
o s s o s omm w ¥ ~
Host Host Guest Guest
Physical Memory Virtual Memory Physical Memory Virtual Memory
*MMU with host page table created by +*One-to-one mapping eGuest page table
host kernel e|t represents some ‘logical’ address in guest

environment. It cannot be used for MMU, because
guest physical address is another virtual address.
*MMU with shadow page table created by
hypervisor

22

Memory virtualization

Nested Paging

Guest operating system continues to maintain GVAiiii@GPA mappings in the guest page tables.
But the VMM maintains GPAii@HPA mappings in an additional level of page tables, called nested page tables.
Both the guest page tables and the nested page tables are exposed to the hardware.

When a logical address is accessed, the hardware walks the guest page tables as in the case of native execution,

but for every GPA accessed during the guest page table walk, the hardware also walks the nested page tables to
determine the corresponding HPA.

Pros

e Simple to implement

e Support unmodified guest OS
Cons

e H/W supports is needed.

e Larger TLB footprint

C D @
Virtual Machine 1 Virtual Machine 2
Process 1 Process 2 Process 1 Process 2)
Guest Vir-
llllll llllll Illlll llllll
---------- dress

(GVA)

Phy5|cal
Address
(HPA)

23

Memory virtualization

e Comparison

Direct Paging Shadow Paging Nested Paging
Speed Very Fast Very Slow Fast
(Almost Native)
Guest Kernel Yes No No
Modification
Need H/W Support No No Yes
Complexity Simple Complex Very Simple

24

Extended page tables (EPT)

EPT Base Pointer

I

- Host Physical Address
- Guest Physical Address
Guest Linear Address

Feature supporting the virtualization of physical memory

Guest-physical addresses are translated by traversing a set of EPT paging structures to produce physical addresses
that are used to access memory

Guest can have full control over page tables/events

— CR3, CRO, CR4 paging bits, INVLPG, page fault

VMM controls Extended Page Tables

CPU uses both tables, guest paging structure and EPT paging structure

EPT activated on VM entry
— When EPT active, EPT base pointer (loaded on VM entry from VMCS) points to extended page tables

EPT deactivated on VM exit

25

EPT translation

Guest Linear Address

IA-32 Page
Extended Directory
Page IA-32 Page
Tables Extended Table

Page
Tables Extended

Page

7 Tables

7
Guest
Physical Page
Base Address

All guest-physical addresses go through extended page tables
— Includes address in CR3, address in PDE, address in PTE, etc.
In addition to translating a guest-physical address to a physical address, EPT specifies

the privileges that software is allowed when accessing the address. Attempts at
disallowed accesses are called EPT violations and cause VM exits.

26

10 virtualization

e Front-end/Back-end driver model

— Guest OS uses para-virtualized front-end driver to send requests to backend driver
— Back-end driver on secure domain receives the requests, performs actual IO using the

native driver

™ ™
DomO (Secure Domain) DomU (General Domain)
[Process] [Process] [Process] [Process]
Modified Linux Kernel Modified Linux Kernel
[Backend Driver]4- ----- -1H- Frontend Driver]
[Native Driver]
g . ¢ O J
e /) N\
v Xen(Hypervisor)
. safeHWIF | | VituwalCPU | . VitualMMU |
\. J
CPU Memory Storage Network

27

10 virtualization (cont’d)

Emulation

Behavior of a particular device is emulated as a software module.
Guest OS uses the native device driver for the particular device.
VMM intercepts all the access from guest OS to the device.

The intercepted accesses are sent to the emulated device.

The Emulated device do the actual 10 operations.

e N [N
Normal Guest OS QEMU
Process [Process] [Process]

Linux Kernel (Guest) Emulated
[Device Drivers] Device
N J Q : = 0 Q 4 J
/ L' K I - - -’ ‘/ \
- ’
INUX Kerne Hypervisor ________ '
[Device Drivers]
_ 4

CPU Memory Storage Network

28

10 virtualization (cont’d)

e H/W Assisted |0 Virtualization
— A specially designed H/W supports concurrent accesses from multiple guest OS.
— Guest OS use the unmodified device driver.

— Guest OS can access arbitrary host physical memory through DMA.
e Intel VT-d controls the host physical memory access from the guest OS through DMA.

e N ™
Guest VM Guest VM
[Process] [Process] [Process][Process]
Guest Kernel Guest Kernel
[Device Drivers } [Device Drivers J
o |
. ’ ¢ O Y /
(.V <. B
Hypervisof~. _ S
e e T \J J

CPU Memory Storage Network

IO virt. model: frontend/backend

-

Device Emulation Process

~

/

Virtual Machine

\\\

Interface Card

process process
: Linux Kernel
Disk
. . Backend
Disk Device Thread Device Disk Device DNI'C
—> Driver Driver Cvice
Driver
N \ A"
VINT VMEXIT Linux Kernel
Hypervior
\ 4 \ 4
vmexit handler
\
Disk Device NIC Device FB Device
Driver Driver Driver
v A INT
~
Disk [Network } [Frame buffer J [
J

30

10 virtualization (cont’d)

e Comparison

Front-end/Back-end Emulation H/W Assisted 10
Driver Model Virtualization
Speed Very Slow Very Slow Fast
Device Driver Yes No No
Modification
Need H/W Support No No Yes
Complexity Simple Complex Simple

31

This week

* Virtualization
« CPU
* Memory
* 10

* Paper: My VM is Lighter (and safer) than your Container

32

Isolating workloads ...

Virtualization

GuestOS
Windows

Strong isolation
m Heavy weight

VS.

Containers

container container container

libs / servic2;

Host OS (Linux)

Hardware

Lightweight

m Iffy isolation

33

Containers ...

* |solated environments to run applications /
services

* Images include all software dependencies

* Prescriptive, portable, easy to build, quick to
deploy

_ = — = <HPC focused
N & \;'—XC'// @) (3 \‘\
\

OpenVZ docker Singularity 5Apus I

P o
@ rkt podman \ 000 .‘E /I
\Cﬂ'larliecloud SHIFTER ¢

”’

~
~~——’

Containers

container container container

libs / servic2;

Host OS (Linux)

Hardware

34

Containers ...

* Rely on abstraction feature: namespace that Containers

container container container

the kernel provides

* Popular example: docker

* Creates containers from recipe-like files libs / servic2s
- Cloud-based image distribution strategy Hst OS (Linux)

- < HPC focused e
e B Hardware
. & ® S
& \/ LXC / \J
peVZ - docker I [
\ 1 >
/
&) podman v W %
\ Charliecloud SHIFTER ¢
N 7’
~ -

§~——

Singularity s.pus

35

Issues with containers

* Containers use syscall APl instead of simple x86 ABI offered by VMs
* Difficult to secure syscalls even after several isolation mechanisms
* Have a lot of increasing number of exploits

* Monopolize or exhaust system resources

36

Issues with containers

* Containers use syscall APl instead of simple x86 ABI offered by VMs
* Difficult to secure syscalls even after several isolation mechanisms
* Have a lot of increasing number of exploits

* Monopolize or exhaust system resources

Problem: How do we provide achieve the performance of containers

with the security of VMs?

37

Efficient VM requirement ...

Provide efficient virtualization on top of hypervisors with the following aim:
* Lightweight
* Fastinstantiation
* Capability of running hundreds of instances

* Pause /unpause

38

Observation

* Size of guest VMs: limits both scalability and virtualization performance

__ 1000
e 800 |
© 600 |
S 400
8 200}
oM

0

0 200 400 600 800 1000
VM image size (MB)

39

Observation

* Size of guest VMs: limits both scalability and virtualization performance

1000
e 800 |
© 600 |
£ 400
8 200}
© 0

0 200 400 600 800 1000
VM image size (MB)

* Most containers and VMs run one application at a time

e Goal: Minimize the size of the guest OS

40

Standard VM: application on top of distro

3" Party Applications

Libraries

Services

Kernel

41

Most of the VM is not used

memcached

netfront
blkfront

User Application

3" Party Applications

Libraries

Services

Kernel

42

Unikernels: single app + minimalistic OS

—)

Unikernels are lightweight:
* Daytime - 480KB disk, 3.4MB RAM

* Minipython - 3.52MB disk, SMB RAM
* TLS termination proxy — 3.58MB disk, 8MB RAM

MINIMALISTIC

30VdS
SS3HAAV F15ONIS

Unikernels

* Tiny VMs where a minimalistic OS is directly linked with specific application

* Size of the VM is always small
« Example:

ClickOS: running custom Click modular router
Mirage: Creates a minimalistic app + OS combination for given OCaml app.

MiniOS: toy guest OS

44

Tinyx: Small Linux distro for target app.

memcached

netfront
blkfront

Find dependencies
* objdump
* dpkg

Install app & deps
* OverlayFS
* Cleanup

Small kernel:
* Remove drivers
* User config opts

45

Tinyx: Small Linux distro for target app.

bash

memcached

Tinyx VMs are also lightweight:
* Kernel: 1.5MB (compared to 8MB)
* Image size — 10-30MB (compared to 1GB).

e Boot: 200ms instead of 2s.

netfront
blkfront

Question ...

Are lightweight VMs enough for good performance?

47

Look into Xen ...

* Type 1 hypervisor
 Manages basic resources (CPU, memory,
etc.)
* Launches most privileged driver domain:
domO
* Direct access to hardware
- Manage the hypervisor and launches
unprivileged guest domains called

DomUs

Dom0 (Linux/NetBSD)

0]
]
o
S
e
]
o)

netbackl
xenbus

Hardware (CPU, Memory,

MMU,

xenbus

NICs,

48

)

VM, container, and process creation times

Process Create

10°

104 |

-
o
W

Time [ms]
- |
N

107 . | N . _

o U bl

0 200 400 600 800 1000
Number of running guests

49

VM, container, and process creation times

Process Create Docker Boot ———

10°

100 MMWWMWMWWM il n
0 200

400 600 800 1000

Number of running guests .

VM, container, and process creation times

Docker Boot Debian Boot Debian Create

10°

1 Debian: 1.1GB,
2.6-82 secs

100 MMWWMWMWWM il n
0 200

400 600 800 1000

Number of running guests .

VM, container, and process creation times

MiniOS Boot MiniOS Create - - - -

10°

—
o
A

-
o
W

Time [ms]
- |
N

—
o
—_

—
o
o

0 200

400 600 800 1000

Number of running guests .

VM, container, and process creation times

Tinyx Boot

Tinyx Create - - - -

'-7—_
3-——
h
bt
4 4
. L]
|
4
5

W :
£ . W
i— 10° 4. B
107 L | N . |
e Tkl
0 200 400 600 800 1000

Number of running guests .

Xen: Creation time breakdown (unikernel)

1800 ! | ! |
config
1600 = pypervisor mmmmm i
1400 - Xenstore WEEEEE ... TR .
devices N
— 1200 1 load memmm AR BN -
£ 1000 | toolstack memm L
£ 800
= 600
400
200
0
0 200 400 600 800 1000

Biggest culprits: XenStore and device creation

Xenstore overhead

* Message based protocol triggers multiple software interrupts and domain
changes between DomO kernel and userspace, hypervisor and the guest

* Writing certain information (e.g., unigue guest names) causes linear overhead

* Writing another information type requires writing data in multiple XenStore log
records: uses transaction to ensure atomicity

» Xenstore logs every access to log files

55

What is wrong with Xenstore?

x1 Backend Frontend
toolstack (dom0) (VM)
K
Write X6
ot
Create device x3 status N%Fyfy Y,

Xen Hypervisor

More than 30 Xenstore entries are used per device, resulting in hundreds
of XenStore accesses

LightVM: the alternative!

* Re-design of the basic Xen control plane
* No Xenstore for VM creation or boot, instead uses a lean driver (noxs)

* New virtualization toolstack as well (libchaos)

57

LightVM architecture

Dom0O (Linux/NetBSD)

chaos 1
[]
daemon

libchaos libchaos
(prepare) (execute) 2

3.

(0)]
M ()]
0 0 a
5 Q i
G = >
S 0 =
o O

Chaos — toolstack optimized for
paravirtualized guests

Split functionality

Noxs - no XenStore

58

Split toolstack

VM create
command

VM creation calls
(standard toolstack)

1. HYPERVISOR RESERVATION
fnl... fnN

2. COMPUTE ALLOCATION
fnl ... fnN

3. MEMORY RESERVATION
fnl...fnN

4. MEMORY PREPARATION
fnl...fnN

s

5. DEVICE PRE-CREATION
fnl...fnN

6. CONFIGURATION PARSING
fnl...fnN

VM CREATE PROCESS

7. DEVICE INITIALIZATION
fnl ... fnN

8. IMAGE BUILD
fnl... fnN

9. VIRTUAL MACHINE BOOT
fnl...fnN

COMMON TO ALL
GUESTS

VM creation calls
(split toolstack)

. HYPERVISOR RESERVATION

fnl...fnN

. COMPUTE ALLOCATION

fnl...fnN

. MEMORY RESERVATION

fnl...fnN

. MEMORY PREPARATION

fnl...fnN

. DEVICE PRE-CREATION

fnl...fnN

. CONFIGURATION PARSING

fnl... fnN

. DEVICE INITIALIZATION

fnl... fnN

. IMAGE BUILD

fnl... fnN

. VIRTUAL MACHINE BOOT

fnl... fnN

(NOW3va) 3SVHd 31v3I¥d-38d

VM create
command

ISVHd INIL-NNY

59

Removes Xenstore

NoXS
Xenstore is used to:

e Store data

e Communicate between guests

——

e Synchronization

Event channels

Shared memory

NW NW
backend frontend
AE a5l la
- = w | |'S
Q ar + ‘:J
= X 4 X
|
=
backend-id
event channel id
grant reference
(a) XenStore
NW NW
backend frontend
backend-ic

event channel id
grant reference

backend-id
event channel id
rant reference

60

Noxs functioning

chaos
toolstack

Notify Frontend

Update dev

(VM)

Device control

Backend /

(domO)

61

Instantiation: Unikernel vs Tinyx

1024
512 +
256 __
128 +

64 Tinyx over LightVM ——
32 ¢+ Unikernel over LightVM ——
16 + Docker

Time [ms]

= N 5~ OO

0 200 400 600 300 1000

Tinyx (minimalistic Linux) close to Docker times!

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

62

Instantiation: high density (noop unikernel)

65536 — , .
LightVM ———

16384 | | Docker —

4096 Docker: 150 ms-666ms ‘

) - Out of memory
£ 1024 | _
QE‘) 256 | , | | | [
= _
64 | :

: Unikernel: 5.2ms-8.6ms
16 | _ | | _ -

P s i e e

O 1000 2000 3000 4000 5000 6000 7000 8000
Number of Running VMs/Containers

Server: 4 x AMD Opteron 6376 CPU@2.3GHz (64 cores total), 128GB DDR3 RAM, Xen/Linux versions 4.8 63

Understanding LightVM components

4096

1024 |- I | | l
256 |- | | l

64 - | | | |

Y
(o)
T
|

Creation Time [mg]

=~
|
|

1 1 | | |
0 200 400 600 800 1000

Number of Running VMs

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 64

Understanding LightVM components

4096
1024 - I l
17
£ 256 | |
g chaos [XS]
- 64 - | ,\‘d e s U
- WM‘W\M
S b
© 16 WNWMWW | | | | |
O
4 L _
‘I 1 | | |
0 200 400 600 800 1000
Number of Running VMs

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

Understanding LightVM components

4096

1024 |- I | l

256 - chaos [XS+spli] -

chaos [XS]
64 - | h w | W\d

T

Y
(@)
s

Creation Time [mg]

=~
|
|

1 1 | | |
0 200 400 600 800 1000

Number of Running VMs

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 66

Understanding LightVM components

4096
1024 - I !
%)
£ 256 | chaos [XS+spli] -
g chaos [XS]
= 64 = — | b
S i,
ot |i|
I 'w N Mﬂ
S l ;
4 L i
chaos[NoXS]
‘I 1 | | |
0 200 400 600 800

Number of Running VMs

1000

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

Creation Time [mg]

Understanding LightVM components

4096

1024 -

256

64

Y
o)

S~

x|

| chaos [XS+split]

chaos XS]
Rt
| ‘i |

me}m,,\d
MMM
chaos [NoXS] LightVM

—

Note: 2.3 ms with all optimizations and no devices

V . 4 , , mnuxversions 4.5

68

Checkpointing

Time [ms]
o

x|
chaos+xenstore
LightVM

|

—
—
=
.

400 600

(a) Save

800

Number of Running VMs

1000

Time [ms]

1024

256 |

64

16 |

\ l| fl

}
A
g l‘ ! 4 —liL i
| — -
4

Xl

chaos [XS] —— 1

Chaos [NOXS] s

1 |

LightVM ——

—

200 400 600 800
Number of Running VMs

(b) Restore

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

1000

Migration

4096 —— . . .
1024 .
%) 256 [—r o '
= e A_u-u—w—ﬂ
()} L x| :
E 16 | chaos [XS] ——
= 4 L chaos [NoXS] —— -
1L | | LightVM ——]

0 200 400 600 800 1000
Number of Running VMs

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

Memory footprint

) 65536 -

s 1 6384 |

o 4096 [/ sssssases »

2k 1024)

= ak]

< ~Jo Debian ——— |

S ol Tinyx

g 16 Docker Micropython -------

2 4 Minipython

= 14 Micropython Process - - - -- '
0 200 400 600 800 1000

VM/Container/Process #

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

71

CPU usage

20 1

N
o

CPU Utilization (%)

Debian
Tinyx
Unikernel
Docker «:eees.

200 400 600 800

Number of Running VMs/Containers

Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

72

Use cases

« Mobile-edge computing
 Personal firewalls
« Just-in-time services

* Lightweight computing

73

Summary

« Virtualization is the backbone of today’s computing infrastructure

 Hardware provides support for efficient virtualization
* CPU, memory, IO
 VMs provide:
e Strong isolation
* And also lightweight: 2—200 ms instantiation times, memory footprint of 10s of
MBs
* Achieved through:
* Lightweight guests

* Re-architected VM control plane

74

