
CS 477:

Advanced Operating Systems
Virtualization

• Virtualization

• CPU

• Memory

• IO

• Paper: My VM is Lighter (and safer) than your Container

2

This week

3

What is virtualization?
Process of presenting and partitioning computing resources in a logical way rather

than what is dictated by their physical reality

• Extend or replace an existing interface to mimic the behavior of another system

• For portability, flexibility …

4

Traditional OS vs virtual machines (VMs)

Traditional OS Virtual machine

5

Traditional OS vs virtual machines (VMs)

Virtual machine

Virtual machine: An execution

environment identical to a

physical machine, with the

ability to execute a full OS

Process: OS :: OS:

Virtualization layer (Virtual

machine monitor, VMM, or

hypervisor)

6

History
• Virtual machines were popular in 60s-70s

• Share resources of mainframe computers [Goldberg 1974]

• Run multiple single-user OSes

• Interest lost in 80s-90s’

• Development of multi-user OS

• Rapid drop in hardware cost

• What is virtualization?
– Virtualization is a way to run multiple operating systems and user applications on the same

hardware
– Virtual Machine Monitor (Hypervisor) is a software layer that allows several virtual machines to run

on a physical machine

• Types of VMMs
– Type-1: hypervisor runs directly on hardware
– Type-2: hypervisor runs on a host OS

7

Xen, VMware ESX, Microsoft Hyper-V

Hardware

VMM

VM1 VM2

Type 1

Host

Guest

• Virtual Machine Monitor (VMM) = Hypervisor = Host OS
• Virtual Machine (VM) = Guest OS

Hardware

OS

Process VMM

VM1 VM2

Type 2

KVM, VMware Workstation, Sun VirtualBox, QEMU

Host

Guest

Virtualization

– Isolation
• Limits security exposures

• Reduces spread of risks

– Roll-Back
• Quickly recovers from security breaches

– Abstraction
• Limits direct access to hardware

– Portability
• Disaster recovery

• Switches to “standby” VMs

– Deployment
• Distributes workloads

• Customizes guest OS security settings

8

Virtualization advantages

• Applications
– Server virtualization

• Green IT

• Xen, VMware ESX Server

– Desktop virtualization
• VMware, VirtualBox, Citrix’s Xen HDX

– Mobile virtualization
• Secure execution

• Xen on ARM

– Cloud computing
• Storage/platform cloud services

• Amazon EC2, MS Azure, Google AppEngine

– Emulation
• iPhone/Android emulator

• Qemu, Bochs

9

Virtualization types

• Classic virtualization
– Trap & Emulate

• For an architecture to be virtualizable, all sensitive instructions must be handled by VMM

– Sensitive instructions include
• Instruction that changes processor mode

• Instruction that accesses hardware directly

• Instruction whose behavior is different in user/kernel mode

10

Processor virtualization

11

x86 is not virtualizable
• Some instructions (sensitive) read or update the state of VM and don’t trap (non-privileged)

• 17 sensitive, non-privileged instructions

• popf doesn’t update interrupt flag (IF)

• Impossible to detect when guest disables interrupts

• push %cs can read code segment selector (%cs) and learn its CPL

• Guest gets confused

Group Instructions

Access to interrupt flag pushf, popf, iret

Segment manipulation instructions pop <seg>, push <seg>, mov <seg>

Read-only access to privileged instructions sgdt, sldt, sidt, smsw

Interrupt and gate instructions fcall, longjump, retfar, str, int <n>

• Para-virtualization
– Requires modifications to the guest OS

• Guest is aware that it is running on a VM

– Example
• Instead of doing “cli” (turn off interrupts), guest OS

should do hypercall(DISABLE_INT)

– Pros
• Near-native performance

• No hardware support required

– Cons
• Requires specifically modified guest

– Solutions : Xen

Hypervisor

Hardware

EFLAGS register

cli

Guest Hypercall(DISABLE_INT)

12

Processor virtualization (cont’d)

• Full-virtualization
– Emulation

• Process of implementing the interface and
functionality of one system on a different
system

• Do whatever the CPU does, but in software
• CPU emulation

– Fetches and decodes the next instruction
– Executes using the emulated registers and memory

• Pros
– No hardware support required
– Simple

• Cons
– Very slow

• Solutions : Bochs

addl %ebx, %eax

unsigned long regs[8];
regs[EAX] += regs[EBX];

13

Processor virtualization (cont’d)

• Full-virtualization
– Binary translation

• Translates code block to safe code block (like JIT) directly
• Dynamically translates privileged instructions to normal

instructions which can be executed in user mode
• Pros

– No hardware support required
– Fast

• Cons
– Hard to implement

» VMM needs x86-to-x86 binary compiler

• Solutions : VMware, QEMU

JIT : just in time compilation 14

Processor virtualization (cont’d)

• Full-virtualization
– Hardware-assisted virtualization

• Runs the VM directly on the CPU
– No emulation

• Integrates new execution mode into the CPU by
extending the instruction set and control structure

• Pros
– Fast

• Cons
– Need hardware support

» AMD SVM

» Intel VT

• Solutions : KVM, Xen

AMD SVM : Secure Virtual Machine
Intel VT : Virtualization Technology 15

Ring 3

Ring 0

VMX
Root

Virtual Machines (VMs)

Apps

OS

VM Monitor (VMM)

Apps

OS

VM Exit VM Entry

Processor virtualization (cont’d)

• VMX(Virtual Machine Extension) supports virtualization of processor hardware.

• Two new VT-x operating modes

– Less-privileged mode
(VMX non-root) for guest OSes

– More-privileged mode
(VMX root) for VMM

• Two new transitions

– VM entry to non-root operation

– VM exit to root operation

• Execution controls determine when exits occur

– Access to privilege state, occurrence of exceptions, etc.

– Flexibility provided to minimize unwanted exits

• VM Control Structure (VMCS) controls VMX operation

– Also holds guest and host state

Ring 3

Ring 0

VMX
Root

Virtual Machines (VMs)

Apps

OS

VM Monitor (VMM)

Apps

OS

VM Exit VM Entry

16

Intel VMX

• Comparison

Full-virtualization
(Emulation, Binary Translation)

Operating System

Hardware

Guest

Virtual Machine Monitor

Native OS

User Application

User
Application

Virtual Machine Monitor

Hardware

Modified Guest

Modified OS

User Application

Hypercall Interface

Modified Guest

Modified OS

User Application

Para-virtualization Full-virtualization
(Hardware-assisted VT)

Virtual Machine Monitor

Hardware
(Intel VT, AMD SVM support)

Guest

Native OS

User Application

Guest

Native OS

User Application

17

Processor virtualization (cont’d)

• Comparison

Para-
virtualization

Full-
virtualization
(Emulation)

Full-
virtualization

(Binary translation)

Full-
virtualization

(Hardware-assisted
VT)

Speed Very Fast
(Almost Native)

Very Slow Fast Fast

Guest Kernel
Modification

Yes No No No

Support
Other Arch

No Yes No No

Solutions Xen,
VMWare ESX

Bochs VMWare, QEMU KVM, Xen

Purposes Server virtualization Emulator Desktop virtualization Desktop
virtualization

18

Processor virtualization (cont’d)

19

Host
Physical Memory

Host
Virtual Memory

Guest
Physical Memory

Guest
Virtual Memory

VM memory map

• Direct Paging
– Guest OS directly maintains a mapping of Guest Virtual Address to Host Physical Address (GVA 📫✇ HPA).

– When a logical address is access, the hardware walks these page tables to determine the corresponding physical address.

– Dedicated physical memory region is allocated at the initialization of guest OS.

– Pros
• Simple to implement

• High performance (no virtualization overhead)

– Cons
• Need to modify guest kernel (not applicable to closed-source OS)

• Inflexible memory management

20

Memory virtualization

• Shadow Paging
– VMM maintains GVA📫✇GPA mappings in its internal data structures and stores GVA📫✇HPA

mappings in shadow page tables that are exposed to the hardware.
– The VMM keeps these shadow page tables synchronized to the guest page tables.
– This synchronization introduces virtualization overhead when the guest updates its page tables.
– Pros

• Support unmodified guest OS

– Cons
• Hard to implement and maintain
• Large virtualization overhead

21

Memory virtualization (cont’d)

Host
Physical Memory

Host
Virtual Memory

Guest
Physical Memory

Guest
Virtual Memory

•MMU with host page table created by
host kernel

•One-to-one mapping •Guest page table
•It represents some ‘logical’ address in guest

environment. It cannot be used for MMU, because
guest physical address is another virtual address.

•MMU with shadow page table created by
hypervisor

22

Shadow paging

• Nested Paging
– Guest operating system continues to maintain GVA📫📫✇GPA mappings in the guest page tables.
– But the VMM maintains GPA📫✇HPA mappings in an additional level of page tables, called nested page tables.
– Both the guest page tables and the nested page tables are exposed to the hardware.
– When a logical address is accessed, the hardware walks the guest page tables as in the case of native execution,

but for every GPA accessed during the guest page table walk, the hardware also walks the nested page tables to
determine the corresponding HPA.

– Pros
• Simple to implement
• Support unmodified guest OS

– Cons
• H/W supports is needed.
• Larger TLB footprint

23

Memory virtualization

• Comparison

24

Direct Paging Shadow Paging Nested Paging

Speed Very Fast
(Almost Native)

Very Slow Fast

Guest Kernel
Modification

Yes No No

Need H/W Support No No Yes

Complexity Simple Complex Very Simple

Memory virtualization

• Feature supporting the virtualization of physical memory

• Guest-physical addresses are translated by traversing a set of EPT paging structures to produce physical addresses
that are used to access memory

• Guest can have full control over page tables/events
– CR3, CR0, CR4 paging bits, INVLPG, page fault

• VMM controls Extended Page Tables

• CPU uses both tables, guest paging structure and EPT paging structure

• EPT activated on VM entry
– When EPT active, EPT base pointer (loaded on VM entry from VMCS) points to extended page tables

• EPT deactivated on VM exit

25

Extended page tables (EPT)

• All guest-physical addresses go through extended page tables

– Includes address in CR3, address in PDE, address in PTE, etc.

• In addition to translating a guest-physical address to a physical address, EPT specifies
the privileges that software is allowed when accessing the address. Attempts at
disallowed accesses are called EPT violations and cause VM exits.

26

EPT translation

• Front-end/Back-end driver model

– Guest OS uses para-virtualized front-end driver to send requests to backend driver

– Back-end driver on secure domain receives the requests, performs actual IO using the
native driver

27

Dom0 (Secure Domain)
Process

Modified Linux Kernel

Xen(Hypervisor)

CPU Memory Storage Network

Native Driver

Backend Driver

Safe HW IF

Process

DomU (General Domain)
Process

Modified Linux Kernel

Frontend Driver

Process

Virtual CPU Virtual MMU

IO virtualization

• Emulation

– Behavior of a particular device is emulated as a software module.

– Guest OS uses the native device driver for the particular device.

– VMM intercepts all the access from guest OS to the device.

– The intercepted accesses are sent to the emulated device.

– The Emulated device do the actual IO operations.

28

Guest OS
Process

Linux Kernel (Guest)

 Linux Kernel

CPU Memory Storage Network

Device Drivers

Normal
Process

Device Drivers

Hypervisor

QEMU
Process

Emulated
Device

IO virtualization (cont’d)

• H/W Assisted IO Virtualization

– A specially designed H/W supports concurrent accesses from multiple guest OS.

– Guest OS use the unmodified device driver.

– Guest OS can access arbitrary host physical memory through DMA.

• Intel VT-d controls the host physical memory access from the guest OS through DMA.

29

Guest VM

Guest Kernel

 Hypervisor

CPU Memory Storage Network

Device Drivers

Process

Guest VM

Guest Kernel

Device Drivers

Process Process Process

IO virtualization (cont’d)

30

Disk Network
Interface Card Frame buffer …

Linux Kernel

Virtual Machine

process process

Linux Kernel

Disk Device
Driver

NIC
Device
Driver

…

Hypervior

Disk Device
Driver

NIC Device
Driver

FB Device
Driver …

vmexit handler

Device Emulation Process

Disk Device Thread

Disk
Backend
Device
Driver

VMEXITVINT

INT

IO virt. model: frontend/backend

• Comparison

31

Front-end/Back-end
Driver Model

Emulation H/W Assisted IO
Virtualization

Speed Very Slow Very Slow Fast

Device Driver
Modification

Yes No No

Need H/W Support No No Yes

Complexity Simple Complex Simple

IO virtualization (cont’d)

• Virtualization

• CPU

• Memory

• IO

• Paper: My VM is Lighter (and safer) than your Container

32

This week

33

Lightweight

Iffy isolation

Strong isolation

Heavy weight

Virtualization

Hardware

Hypervisor

VM

apps

GuestOS
(Linux)

libs

VM

apps

GuestOS
FreeBSD

libs

VM

apps

GuestOS
Windows

libs

Containersvs.

Hardware

Host OS (Linux)

libs / services

apps apps apps

container container container

Isolating workloads …

34

Containers …
• Isolated environments to run applications /

services

• Images include all software dependencies

• Prescriptive, portable, easy to build, quick to

deploy

Containers

Hardware

Host OS (Linux)

libs / services

apps apps apps

container container container

35

Containers …
• Rely on abstraction feature: namespace that

the kernel provides

• Popular example: docker

• Creates containers from recipe-like files

• Cloud-based image distribution strategy

Containers

Hardware

Host OS (Linux)

libs / services

apps apps apps

container container container

36

Issues with containers
• Containers use syscall API instead of simple x86 ABI offered by VMs

• Difficult to secure syscalls even after several isolation mechanisms

• Have a lot of increasing number of exploits

• Monopolize or exhaust system resources

37

Issues with containers
• Containers use syscall API instead of simple x86 ABI offered by VMs

• Difficult to secure syscalls even after several isolation mechanisms

• Have a lot of increasing number of exploits

• Monopolize or exhaust system resources

Problem: How do we provide achieve the performance of containers

with the security of VMs?

38

Efficient VM requirement …
Provide efficient virtualization on top of hypervisors with the following aim:

• Lightweight

• Fast instantiation

• Capability of running hundreds of instances

• Pause / unpause

39

Observation
• Size of guest VMs: limits both scalability and virtualization performance

40

Observation
• Size of guest VMs: limits both scalability and virtualization performance

• Most containers and VMs run one application at a time

• Goal: Minimize the size of the guest OS

VM
User Application

3rd Party Applications

Libraries

Services

Kernel

Standard VM: application on top of distro

41

Kernel

Services

Libraries

User Application

3rd Party Applications

Nginx

memcached bash

libc

libssl

ssh

init

ext4 netfront

blkfront

42

Most of the VM is not used

43 43

Nginx

memcach
ed bash

libc

libssl

ssh

init

ext4 netfron
t

blkfron
t

n
e
t
f
r
o
n
t

b
l
f
r
o
n
t

Nginx

MINIMALISTIC
OPERATING SYSTEM
(e.g., MiniOS, OSv)

SIN
G

LE A
D

D
R

ESS
SPA

C
E

Unikernels are lightweight:

• Daytime - 480KB disk, 3.4MB RAM

• Minipython - 3.52MB disk, 8MB RAM

• TLS termination proxy – 3.58MB disk, 8MB RAM

Unikernels: single app + minimalistic OS

44

Unikernels
• Tiny VMs where a minimalistic OS is directly linked with specific application

• Size of the VM is always small

• Example:

• ClickOS: running custom Click modular router

• Mirage: Creates a minimalistic app + OS combination for given OCaml app.

• MiniOS: toy guest OS

Nginx

memcached bash

libc

libssl

ssh

init

ext4 netfront

blkfront

Nginx

memcached bash

libc

libssl

ssh

init

ext4 netfront

blkfront

Find dependencies
• objdump
• dpkg

Install app & deps
• OverlayFS
• Cleanup

Small kernel:
• Remove drivers
• User config opts

Nginx

Tinyx: Small Linux distro for target app.

45

Nginx

memcached

bash

libc

libssl

ssh

init

ext4 netfront

blkfront

Tinyx VMs are also lightweight:

• Kernel: 1.5MB (compared to 8MB)

• Image size – 10-30MB (compared to 1GB).

• Boot: 200ms instead of 2s.

Tinyx: Small Linux distro for target app.

46

47

Question …

Are lightweight VMs enough for good performance?

48

Look into Xen …
• Type 1 hypervisor

• Manages basic resources (CPU, memory,

etc.)

• Launches most privileged driver domain:

dom0

• Direct access to hardware

• Manage the hypervisor and launches

unprivileged guest domains called

DomUs

49

VM, container, and process creation times

49

50

VM, container, and process creation times

50

51

Debian: 1.1GB,
2.6-82 secs

VM, container, and process creation times

51

52

VM, container, and process creation times

52

53

VM, container, and process creation times

53

54 54* Note: Spikes in graph due to XenStore’s garbage collector (it’s written in OCaml)

Xen: Creation time breakdown (unikernel)

Biggest culprits: XenStore and device creation

55

Xenstore overhead
• Message based protocol triggers multiple software interrupts and domain

changes between Dom0 kernel and userspace, hypervisor and the guest

• Writing certain information (e.g., unique guest names) causes linear overhead

• Writing another information type requires writing data in multiple XenStore log

records: uses transaction to ensure atomicity

• Xenstore logs every access to log files

56

Xen Hypervisor

56

Frontend
(VM)

Backend
(dom0)

xl
toolstack

Xen
store

Create device x3 NotifyNotify
Write
status

Notify
x6

Notify

More than 30 Xenstore entries are used per device, resulting in hundreds
of XenStore accesses

What is wrong with Xenstore?

57

LightVM: the alternative!
• Re-design of the basic Xen control plane

• No Xenstore for VM creation or boot, instead uses a lean driver (noxs)

• New virtualization toolstack as well (libchaos)

1. Chaos – toolstack optimized for
paravirtualized guests

2. Split functionality

3. Noxs - no XenStore

58

Dom0 (Linux/NetBSD)

chaos

N
I
C

d
r
i
v
e
r
s

b
l
o
c
k

SW switch
v
i
r
t

d
r
i
v
e
r
s

n
e
t
b
a
c
k

libxc

xendevd

libchaos
(prepare)

chaos
daemon

libchaos
(execute)

N
O
X
S

58

LightVM architecture

VM creation calls
(standard toolstack)

P
R

E-C
R

EA
TE P

H
A

SE (D
A

EM
O

N
)

2. COMPUTE ALLOCATION
 fn1 … fnN

1. HYPERVISOR RESERVATION
 fn1 … fnN

3. MEMORY RESERVATION
 fn1 … fnN

4. MEMORY PREPARATION
 fn1 … fnN

5. DEVICE PRE-CREATION
 fn1 … fnN

6. CONFIGURATION PARSING
 fn1 … fnN

7. DEVICE INITIALIZATION
 fn1 … fnN

8. IMAGE BUILD
 fn1 … fnN

9. VIRTUAL MACHINE BOOT
 fn1 … fnN

V
M

 C
R

EA
TE

 P
R

O
C

ES
S

VM creation calls
(split toolstack)

2. COMPUTE ALLOCATION
 fn1 … fnN

1. HYPERVISOR RESERVATION
 fn1 … fnN

3. MEMORY RESERVATION
 fn1 … fnN

4. MEMORY PREPARATION
 fn1 … fnN

5. DEVICE PRE-CREATION
 fn1 … fnN

6. CONFIGURATION PARSING
 fn1 … fnN

7. DEVICE INITIALIZATION
 fn1 … fnN

8. IMAGE BUILD
 fn1 … fnN

9. VIRTUAL MACHINE BOOT
 fn1 … fnN

VM create
command

R
U

N
-TIM

E P
H

A
SE

VM create
command

59

COMMON TO ALL
GUESTS

59

Split toolstack

60

Xenstore is used to:

• Store data

• Communicate between guests

• Synchronization

Shared memory

Event channels

NoXS

60

Removes Xenstore

61

Frontend
(VM)

Backend
(dom0)

chaos
toolstack

Device info

Device info

Device control

Device info

Create device (ioctl)

Create device reply

Update dev
info page

Dev ctrl:…

Notif
y

Notify

61

Noxs functioning

62Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

Tinyx (minimalistic Linux) close to Docker times!

62

Instantiation: Unikernel vs Tinyx

63Server: 4 x AMD Opteron 6376 CPU@2.3GHz (64 cores total), 128GB DDR3 RAM, Xen/Linux versions 4.8

Docker: 150 ms-666ms
Out of memory

Unikernel: 5.2ms-8.6ms

63

Instantiation: high density (noop unikernel)

64Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 64

Understanding LightVM components

65Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 65

Understanding LightVM components

66Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 66

Understanding LightVM components

67Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 67

Understanding LightVM components

68Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8

Note: 2.3 ms with all optimizations and no devices
68

Understanding LightVM components

69Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 69

Checkpointing

70Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 70

Migration

71Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 71

Memory footprint

72Server: Intel Xeon E5-1630 v3 CPU@3.7GHz (4 cores), 128GB DDR4 RAM, Xen/Linux versions 4.8 72

CPU usage

73

Use cases
• Mobile-edge computing

• Personal firewalls

• Just-in-time services

• Lightweight computing

74

Summary
• Virtualization is the backbone of today’s computing infrastructure

• Hardware provides support for efficient virtualization

• CPU, memory, IO

• VMs provide:

• Strong isolation

• And also lightweight: 2–200 ms instantiation times, memory footprint of 10s of

MBs

• Achieved through:

• Lightweight guests

• Re-architected VM control plane

