The buttons, joystick, and dip-switches can either be used in polling-mode or in interrupt-based mode. The base-address of this interface is 0x50000080. The different functions are shown below:

byte	word	Functionality:	
index	index	read:	write:
0	0	Read the dip-switches state	No operation
4	1	Read and clear pressed	Write dip-switch pressed
		dip-switch IRQ generators	IRQ enable mask
8	2	Read and clear released	Write dip-switch released
		dip-switch IRQ generators	IRQ enable mask
12	3	Read the joystick and	No operation
		buttons state	
16	4	Read and clear pressed	Write joystick and
		joystick and buttons	buttons pressed
		IRQ generators	IRQ enable mask
20	5	Read and clear released	Write joystick and
		joystick and buttons	buttons released
		IRQ generators	IRQ enable mask
24	6	Read IRQ latency	No operation
		value	
28	7	Clear all IRQ	Clear all IRQ
		generators	enable masks

When addressing the dip-switches, the bit 0 of the 16-bit word corresponds to the dip-switch to the right (nr. 8) of the board. Bit 15 of the 16-bit word corresponds to the dip-switch to the left (nr. 1) of the board in case of the GECKO4Education. In case of the GECKO5Education only the lower 8 bits are available, all others read 0. This coding also holds for the IRQ-masks and IRQ-generators. When addressing the buttons, the GECKO4Education and GECKO5Education have different mappings:

- **GECKO4Education**: the button SW2 (see also the gecko-wiki) is mapped on the LSB, and SW7 is mapped on bit 5.
- **GECKO5Education**: the button SW1 is mapped on bit 5 and SW5 on bit 9. The joystick is mapped as shown below:

bit nr.	Joystick function:	bit nr.	Joystick function:
3	North	2	East
1	South	0	West
4	Center button	-	-

These coding also holds for the IRQ-masks and IRQ-generators.

1 Scanning frequency

The buttons, joystick, and dip-switches are scanned to avoid any dender effects. The standard frequency of this scanning is 1kHz.

2 IRQ handling

Interrupts can be enabled for both pressing a button or releasing a button. The interrupts are enabled in the pressed or released IRQ enable masks. In case an interrupt is enabled and a corresponding action is detected (press and/or release) an interrupt is generated. The dip-switches will activate IRQ bit2, the joystick, and buttons will activate IRQ bit3 of the user-CPU. To see to sources of the IRQ, the pressed and/or released IRQ generators registers can be read out. Reading these registers will then automatically clear the IRQ-event. If a user want to clear all sources that generated an IRQ, a read of the Clear all IRQ generators register can be performed. To clear all IRQ-enable masks a write to the Clear all IRQ enable masks register can be performed.

Finally, the IRQ's generated by the module are active-high and stay active up to the moment the CPU clears the IRQ-generators by the means described above.

3 IRQ latency counter

The module also implements a 32-bit latency counter. This counter will count the number of system clock cycles between the moment an IRQ is generated and it is cleared by the CPU.