=Pi-L

CS-473:
System programming
for
Systems on Chip

Practical work 5

Pl10O, interrupts, and latency’s

Version:
1.0

EPFL CS-473 SPSOC PIO, interrupts, and latency's

Contents

1 Introduction 1
1.1 Prerequisites e e 1
1.2 PIO, interrupts, and latency 1

2 Exercises 2
2.1 Prerequisites e 2
2.2 Polling o 2
2.3 IRQ-driven 3
2.4 Latency's. e 4
25 (optional) Using it all 5

page Il of Il Last change: 18/11/2024 Version: 1.0

EPFL CS-473 SPSOC PIO, interrupts, and latency's

1 Introduction

1.1 Prerequisites

On moodle you find the file buttons.zip; it contains the complete source code of the brute force
accelerated version of the Mandelbrot set. Download this file. This template contains a directory called
buttons, where the makefile can be found as for our previous PW.

For this PW, please make sure that you have the latest version of the virtual-prototype on your GECKO-
board.

1.2 PIO, interrupts, and latency

In the theory we have seen the PIO. The final goal of this PW would be to make an interrupt driven
application that allows us to zoom in/out of the fractal, and to move around. Of course you are allowed
to use your own implementation of the fractal generator that you made in a previous PW. Please note
that the VGA-controller fetches each line in a burst of nr0fPixelsPerLine/2 32-bit words.

Version: 1.0 Last change: 18/11/2024 page 1 of 5

EPFL CS-473 SPSOC PIO, interrupts, and latency's

2 Exercises

2.1 Prerequisites

Familiarize yourself with the accelerated version of the Mandelbrot set. Compile the program by:

i1|cd buttons
make mem1300

Make sure that you do not have any errors. Then, download the buttons.cmen file to your virtual
prototype and see the result.

Before continuing, read the document switches.pdf found on moodle.

2.2 Polling

The most easy way of reading out a PlO is to just poll it's contents, and print the result if there is a
change. In the file switches.h you find some predefined constants. To be able to do the polling, we
need a pointer to the PlO. In main.c add after:

volatile unsigned int xvga = (unsigned int %) 0X50000020;

the line:

1| volatile uint32_t % switches = (uint32_t x) SWITCHES_BASE_ADDRESS;

Now perform following task:

In the endless loop, write all code that is required to read out the dip-switche, buttons, and joystick.
Only in case that there is a change in the state of the dip switche/buttons/joystick, print out the
new state. Hint: you need for each of the buttons, dip-switch, and joystick, two variables, one
holding the old state, and one holding the current state.

When you arrived to see the changes by pressing/releasing a button, changing a dip-switch, or activating
the joystick, perform following task:
Change:

1| volatile uint32_t x switches = (uint32_t =) SWITCHES_BASE_ADDRESS;

into:

1luint32_t * switches = (uint32_t %) SWITCHES_BASE_ADDRESS;

And run the program again. What can you observe, and how can you explain it?

page 2 of 5 Last change: 18/11/2024 Version: 1.0

EPFL CS-473 SPSOC PIO, interrupts, and latency's

Reset

SW5

sSw4

A ADE0BS ﬁ | » < _ Joystick
LLILLI OSSR

- -

Dip-switch SW1 SW2 SW3

Figure 2.1: Button definitions on the GECKO5Education.

2.3 IRQ-driven

Polling is a very inefficient way of reading out a P1O. Most of the time the CPU is just reading the old
value, and not able to do anything else. More efficient is when the CPU is only called to do something
when there is a change, hence an external interrupt. To be able to enable an external interrupt on your
system, several steps need to be taken to be able to enable the interrupt. Read:

Chapter 14 of the document openrisc-arch-1.4-rev0.pdf found on moodle in the week
indicated by Bios and exceptions.

Section 4.6 on the supervision register (SR) in the above mentioned document.

Which bit needs to be set in the supervision register (SR) and which bits in the PIC mask register
to be able to receive the interrupts of the dip switch, buttons, or the joystick?

Hint: read also again the document switches.pdf to know the answer to the bits in the PIC
mask register.

Now that we can enable the external interrupt, we have also to enable the interrupt sources on the
PIO.

Write all the code that is required to enable an interrupt on the pressing on SW2, or setting
dip-switch to 1 (see figure 2.1 for the definitions).

When executing your program, the moment you press SW2, or you set dip-switchl to 1, you will
observe that your system will indefinitely put the text ping on your screen. This comes from the
external interrupt handler, defined as:

__weak void external_interrupt_handler() {
puts("ping\n");

and the fact that the generated IRQ is never cleared. Hence we have to do another step, we have to
write our own handlers that clears the external interrupt.

Write your own external _interrupt_handler () in main.c (hence do not modify exceptions.c),
that calls the function buttons_handler(), in case of an interrupt generated by the buttons, and the
function dipswitch_handler(), in case of an interrupt generated by the dip-switches. In the function
buttons_handler(), read out the buttons IRQ generator. This will clear the generated interrupt
and will indicate which button was pressed. Also add to buttons_handler() a puts("button
handler"). Do the same thing for the functions dipswitch_handler() and joystick_handler(), but
put here a puts("dipswitch handler"), respectively puts("joystick handler").

Version: 1.0 Last change: 18/11/2024 page 3 of 5

EPFL CS-473 SPSOC PIO, interrupts, and latency's

When executing this program, you should now see each time you press SW2 the text button handler.
Also when you put dip-switch to 1, you should see the text dipswitch handler.

2.4 Latency’s

Now that we have the interrupt-driven buttons working, it is interesting to know, what is the cost
involved (/atency). The buttons-PlIO implements a latency counter that counts the number of system
cycles between activating an IRQ, and it's deactivation. We are going to use this to determine the
latency.

Add at the end of your buttons_handler() a printf statement that prints the value in decimal of
the latency counter. Run the program and press several times on SW2 in different intervals, what
can you observe?

We see that the values printed above quite vary. We do the same experiment by disabling the vga-screen
by commenting following line in main.c:

1|vga[3] = swap_u32((unsigned int)&frameBuffer[0]);

Comment the above line in main.c. Run the program and press several times on SW2 in different
intervals, what can you observe? How can you explain the differences with the above experiment?

It is also interesting to know how long the CPU is busy handling the interrupt. To measure this, we are
going to use the performance counters. To do this experiment, we have to add following changes:

Add at the end of the buttons_handler() the statement:

1| redraw = 1;

This will trigger the redraw of the fractal in the main endless loop.

Modify:
i if (redraw = 1) {
redraw = 0;
drawFractal (frameBuffer);
}
to:

if (redraw = 1) {

2 redraw = 0;

perf_print_cycles (PERF_COUNTER_RUNTIME, "irq runtime");
4 drawFractal (frameBuffer);

}

Run the same experiments as before. What can you observe? How many interrupts/sec would the
CPU be able to handle in theory?

page 4 of 5 Last change: 18/11/2024 Version: 1.0

EPFL CS-473 SPSOC PIO, interrupts, and latency's

2.5 (optional) Using it all

Now that we have all working on interrupt bases, we are going to implement an application, with which
we can move and zoom in to/out of our Mandelbrot. To be able to do this, there are three global
variables:

delta, this one you already know, it defines the "zoom factor".
cx0ff, this is a positive number that defines the offset to CX_0.
cy0=ff, this is a positive number that defines the offset to CY_0.

Before continuing please remember to un-comment following line:

1| // vga[3] = swap_u32((unsigned int)&frameBuffer[0]);

We are going to define following functions (see also figure 2.1 for the definition of the buttons):
joystick-left: Go left. This can be implemented by subtracting the step-size from cx0ff.
joystick-right: Go right. This can be implemented by adding the step-size to cx0ff.
joystick-up: Go up. This can be implemented by subtracting the step-size from cyOff.
joystick-down: Go down. This can be implemented by adding the step-size to cyOff.
SW5: Zoom in. This can be implemented by dividing delta by 2.

SW4: Zoom out. This can be implemented by multiplying delta by 2.

Hints:

For moving the step-size delta represents one pixel. It is easier to navigate if you choose a
step-size of 5*delta or 10*delta (moving by 5 or 10 pixels).

When zooming in, you will zoom into the left-top region of the visible fractal. It is with a simple
calculation possible to zoom into the center of the visible fractal.

Implement your nice Mandelbrot application.

Version: 1.0 Last change: 18/11/2024 page 5 of 5

	Introduction
	Prerequisites
	PIO, interrupts, and latency

	Exercises
	Prerequisites
	Polling
	IRQ-driven
	Latency's
	(optional) Using it all

