
CS-473:
System programming

for
Systems on Chip

Practical work 3

Profiling and memory distance

Version:
1.0

CS-473 SPSOC Profiling and memory distance

Contents

1 Introduction 1
1.1 Prerequisites . 1
1.2 Preparations . 1
1.3 Memories . 1

2 Exercises 2
2.1 Prerequisites . 2
2.2 Profiling . 2
2.3 Memory distance . 3
2.4 Exception vectors . 3
2.5 System calls . 4

page II of II Last change: 28/10/2024 Version: 1.0

CS-473 SPSOC Profiling and memory distance

1 Introduction

1.1 Prerequisites

On moodle you find the file mandelbrot_fxpt.zip; it contains the complete source code of the fixed-
point version of the Mandelbrot set. Download this file, and unzip it in the directory programms, where
you also have the floating point version of the last PW.
Make sure that you have access to following documents (available on Moodle):

OpenRISC 1000 Architecture Manual

The GNU Assembler Manual (version 2.41)

The GNU Linker Manual (version 2.41)

You might also need to use some online resources to answer some of the questions in this practical
work.

1.2 Preparations

In the theory session we have seen the performance counters that are present in the or1300. To use
these counters there are support functions. These functions can be found in:
programms/support/include/perf.h
Please familiarize yourself with these functions.

1.3 Memories

In the theory session we have seen that SDRAM’s have some particularities, like the burst mode and the
CPU-Memory distance. In this practical work we are going to see which influences this can have on your
program. Please note that the VGA-controller fetches each line in a burst of nrOfPixelsPerLine/2
32-bit words.

Version: 1.0 Last change: 28/10/2024 page 1 of 5

CS-473 SPSOC Profiling and memory distance

2 Exercises

2.1 Prerequisites

Familiarize yourself with the fixed-point version of the Mandelbrot set. Compile the program by:
1 cd programms/ f r a c t a l _ f x p t _ s o l

make mem1300

Make sure that you do not have any errors. Then, download the fractal_fxpt.cmem file to your
virtual prototype and see the result.

Of course you can also use your own fixed-point version of the Mandelbrot set. Please make sure
that you insert the commands required for profiling and memory distance in your main_fxpt.c. Also
make sure that the flushing of your data-cache (dcache_flush()) is the last command in your main()
function.

2.2 Profiling

In the provided fixed point version of the mandelbrot algorithm, already two profiling counters are
defined as:
per f_set_mask (PERF_COUNTER_0, PERF_STALL_CYCLES_MASK |

2 PERF_ICACHE_NOP_INSERTION_MASK) ;
per f_set_mask (PERF_COUNTER_1, PERF_BUS_IDLE_MASK) ;

The profiling counter 0 counts the stall cycles. To understand why also the PERF_ICACHE_NOP_INSERTION_MASK
is used, the behavior of the fetch-stage needs to be known. In case the fetch-stage has not yet a new
instruction, it will not stall the CPU, but it will insert l.nop instructions. This is counted with the
given mask.

The profiling is started, respectively stopped with the functions:
1 p e r f _ s t a r t () ;

p e r f _ s t o p () ;

After stopping the profiling, please wait at least 5 CPU-cycles, as the profiling module is pipe-lined.

The results of the profiling counters can than be shown with:
p e r f _ p r i n t _ t i m e (PERF_COUNTER_0, " S t a l l c y c l e s ") ;

2 p e r f _ p r i n t _ t i m e (PERF_COUNTER_1, " Bus i d l e c y c l e s ") ;
p e r f _ p r i n t _ t i m e (PERF_COUNTER_RUNTIME, " Runtime c y c l e s ") ;

There exists also another support function that prints the results in decimal format:
1 p e r f _ p r i n t _ c y c l e s (PERF_COUNTER_RUNTIME, " Runtime c y c l e s ") ;

page 2 of 5 Last change: 28/10/2024 Version: 1.0

CS-473 SPSOC Profiling and memory distance

In this exercise we are going to add two profiling counters.

Add and print out the number of:

Instruction cache fetches.

Instruction cache misses.

What can you observe?

2.3 Memory distance

Your virtual prototype has the ability to emulate a speed difference between the CPU and the external
SDRAM. This emulation consists of slowing down the SDRAM-accesses. The macro used for this
purpose is perf_memdist_set(val) that is defined in perf.h. The value-range of val is 0 (the
SDRAM is running at the same frequency as the CPU) up to 63 (one SDRAM clock cycle equals to 63
CPU-clock cycles).

In this exercise we are going to play with the memory distance. Up to this moment we executed the
mandelbrot algorithm with a memory distance value 0.

Execute the mandelbrot algorithm with the memory-distance values 5, 25 and 63.
What can you observe, and how can you explain it?

2.4 Exception vectors

The exception vectors are an array of function pointers. In case of a special condition (such as an
unaligned access, or an interrupt) the processor jumps to the relevant exception handler as pointed by
the corresponding element of the array.
For this and the following exercises, you can use the template programms/exceptions.

Tasks:

1. Read the relevant sections of the OpenRISC 1000 Architecture Manual to learn more about
(1) exception classes and (2) exception processing. What is the role of EPC (a special-
purpose CPU register)?

2. Open support/src/crt0.s in the text editor. Where in this file are the exception vectors
defined? What is the purpose of the .global _vectors directive? You can refer to the
GNU Assembler Manual.

3. What does the _exception_handler do in crt0.s? Explain the l.rfe instruction by
referring to the OpenRISC 1000 Architecture Manual.

4. Open support/include/exception.h in the text editor. This header file allows interfacing
with the exception vector from the C code. Notice that each vector is declared as:

1 t y p e d e f v o i d (∗ e x c e p t i o n _ h a n d l e r _ t) (v o i d) ; /∗ f u n c t i o n p o i n t e r ∗/
e x t e r n e x c e p t i o n _ h a n d l e r _ t _ v e c t o r s [EXCEPTION_COUNT] ;

What is the purpose of the extern keyword? How does extern relate to the .global _vectors
directive?

Version: 1.0 Last change: 28/10/2024 page 3 of 5

CS-473 SPSOC Profiling and memory distance

5. Consider the following code snippet:
i n t ∗ addr = (i n t ∗) 0 x100 ; // choose whateve r a d d r e s s you want

2 i n t data ;
asm v o l a t i l e (" l . lwz %[d] , 0(%[s]) " : [d] "=r " (data) : [s] " r " (addr)) ;

What are the possible exceptions that this code snippet can generate by setting the value of
the addr variable? (Hint: you should have at least two.) Demonstrate on the Gecko board.
What purpose does the volatile keyword serve?

�
Here are some useful online resources for GCC inline assembly:

https://gcc.gnu.org/onlinedocs/gcc/
extensions-to-the-c-language-family/
how-to-use-inline-assembly-language-in-c-code.html

http://www.ethernut.de/en/documents/arm-inline-asm.html

6. In the src/main.c, define your own exception handler for one of the exceptions that you
generated. The name of the exception handler should start with my_. Modify the exception
vectors to enable the new exception handler. You can use the enumeration with symbols
EXCEPTION_* to index the correct exception vector entry. Do the modification only in
main.c, never modify crt0.s or exception.c. Do not forget to #include <exception.h>.

2.5 System calls

A system call (usually abbreviated as syscall) enables programs to request a service from the operating
system. For example, on POSIX-compliant operating systems, syscalls like read and write allow for
reading from/writing to file descriptors or sockets. Each platform provides various ways to invoke system
calls. OpenRISC ISA provides a single system call instruction (l.sys, see the architecture documen-
tation) that raises a system call exception. An operating system provides the syscall functionality by
implementing the system call exception handler. In this part of the practical work, you will implement
a simple system call exception handler.

Tasks:

1. Make a syscall using the SYSCALL(n) macro defined in exception.h. n is the syscall number
chiefly used for identifying the syscall type. Choose n as 0xAA for debugging purposes.

2. Write your custom handler for the system call exception (whose name should start with
my_), then modify the exception vector to enable it. The handler should print the value
of EPC. support/include/spr.h defines helper macros to read to/write from the special
purpose registers (SPRs). You can include it by #include <spr.h>. Use printf ("0x%08x", ...)
for printing the instructions.

3. Print the values of the instruction pointed by EPC, and the previous instruction (EPC - 4).
Which instruction do you think is the system call instruction that has just triggered the
exception?

4. Decode the system call instruction to extract the syscall number. Modify the syscall handler
to print the syscall number as well. Clear the VGA screen for syscall 0xE0. VGA functions
are defined in support/include/vga.h, which you can include by #include <vga.h>.

page 4 of 5 Last change: 28/10/2024 Version: 1.0

https://gcc.gnu.org/onlinedocs/gcc/extensions-to-the-c-language-family/how-to-use-inline-assembly-language-in-c-code.html
https://gcc.gnu.org/onlinedocs/gcc/extensions-to-the-c-language-family/how-to-use-inline-assembly-language-in-c-code.html
https://gcc.gnu.org/onlinedocs/gcc/extensions-to-the-c-language-family/how-to-use-inline-assembly-language-in-c-code.html
http://www.ethernut.de/en/documents/arm-inline-asm.html

CS-473 SPSOC Profiling and memory distance

5. Open the support/src/exception.c. What is the purpose of __weak modifier in front
of the exception handler definitions? __weak is defined as in support/include/defs.h:
/∗∗

2 ∗ @ b r i e f D e f i n e s a weak symbol .
∗

4 ∗/
#d e f i n e __weak __attr ibute__ ((weak))

6. Now, rename your exception handler to system_call_handler (the same name as in the
exception.c). Do not modify the exception vector. Should your code still work given that
there are now two symbols with the same name? Why or why not? Test it.

Version: 1.0 Last change: 28/10/2024 page 5 of 5

	Introduction
	Prerequisites
	Preparations
	Memories

	Exercises
	Prerequisites
	Profiling
	Memory distance
	Exception vectors
	System calls

