=Pi-L

CS-473:
System p;ogrammmg
or
Systems on Chip

Practical work 2

The Mandelbrot set

Version:
1.0

E PFL CS-473 SPSOC The Mandelbrot set

Contents

1 Introduction 1
1.1 Prerequisites e e 1
1.2 Numbersystems L 1

2 Exercises 2
2.1 Prerequisites e 2
2.2 Fixed point Mandelbrot 2
2.3 Your own floating point format L oL 3
24 Grading L 3
2.5 Workflow 3

page Il of Il Last change: 07/10/2024 Version: 1.0

E PFL CS-473 SPSOC The Mandelbrot set

1 Introduction

1.1 Prerequisites

On moodle you find the file mandelbrot.zip; it contains the complete source code of the floating-point
version of the Mandelbrot set. Download this file, and unzip it in the directory programms, where you
also have the helloWorld and bouncingBall programs of last week.

1.2 Number systems

Reminder: The float data type requires 32 bits of memory. It contains the sign in the MSB, followed by
8 bits, which describe the exponent of the number. Subsequently, there are 23 bits which correspond
to the fraction of the value 1. This means that a given number is multiplied or divided by 2 as often
as it fits into the range between 1 and 2. The number of multiplications or divisions corresponds to
the exponent (8 bits). Then 1 is subtracted from the intermediate result, so that the number gets the
value between 0 and 1. This is stored as a fraction in the remaining 23 bits.

As you can imagine from the description, doing floating point calculations on a uP is not evident. Also
the hardware implementation of a floating point unit (FPU) is very "big". This is the reason why most
embedded systems do not have a FPU. This results into a software implementation of the floating-point
arithmetic’s in form of a library.

On the other hand, embedded processors handle efficiently integers. Although integers do not have
fractions, we can easily "transform" them to fixed-point numbers by putting "somewhere" the decimal
point. Note that the compiler does not has a notion of your fixed-point format. Hence it is up to you
to "handle" the position of the point. We often talk here about the Qx.y-format where x is the number
of bits before the decimal point, and y the number of fractional bits. Note: x +y = 32 in case of a
32-bit based integer. Example:

1| typedef int32_t fxpt_8_24; // !< Q8.24 fixed—point type

Furthermore, it is also possible to define our own floating-point format (that is more appropriate for the
given algorithm). By not using the floating-point library, but using our own, also can improve execution
speed. In-lining these functions also helps.

Version: 1.0 Last change: 07/10/2024 page 1 of 3

E PFL CS-473 SPSOC The Mandelbrot set

2 Exercises

2.1 Prerequisites

Familiarize yourself with the floating-point version of the Mandelbrot set. Compile the program by:
cd programms/fractal_flpt

make mem1300

Make sure that you do not have any errors. Then, download the fractal_flpt.cmen file to your
virtual prototype and see the result.

2.2 Fixed point Mandelbrot

We are first going to transform the floating-point version of the Mandelbrot set into a fixed-point
version. To be able to do this, you can proceed according to following steps:

1. Think of a proper Qx.y-format for this algorithm. Note: although we are not going to zoom into
the Mandelbrot set in this exercise, there will be an exercise where this functionality is added.

2. Goto the directory of the fixed-point program:
cd ../fractal_fxpt
You find in this directory the same source-files as for the floating-point version (which you have
to modify), nl.:

include/fractal_fxpt.h.
src/fractal_fxpt.c.
src/main_fxpt.c.

3. Modify the file include/fractal_fxpt.h where you define this format with a typedef, and
modify the below functions to account for your new type:

1| //! \brief Pointer to fractal point calculation function
typedef uintl6_t (*calc_frac_point_p)(float cx, float cy, uintl6_t n_max);

uintl6_t calc_mandelbrot_point_soft(float cx, float cy, uintl6_t n_max);
void draw_fractal(rgh565 *fbuf, int width, int height,

7 calc_frac_point_p cfp_p, iter_to_colour_p i2c_p,
float cx_0, float cy_0, float delta, uintl6_t n_max);

4. Modify the required functions in src/fractal_fxpt.c to perform the fixed-point Mandelbrot
algorithm. Following functions can be left untouched:

1| rgb565 iter_to_bw(uintl6_t iter, uintl6_t n_max);

rgb565 iter_to_grayscale(uintl6_t iter, uintl6_t n_max);
slint ilog2(unsigned x);

rgb565 iter_to_colour(uintl6_t iter, uintl6_t n_max);

5| rgb565 iter_to_colourl (uintl6_t iter, uintl6_t n_max);

5. Modify the required functionality in src/main_fxpt.c to perform the fixed-point Mandelbrot
algorithm.

6. Test your new program on the virtual prototype. What can you observe?

page 2 of 3 Last change: 07/10/2024 Version: 1.0

E PFL CS-473 SPSOC The Mandelbrot set

Hints:

1. When you multiply two fixed-point numbers, how many bits do you require, and where is the
decimal point?

2. There is no detection of overflow and underflow, how to handle these aspects?

2.3 Your own floating point format

In this second exercise you are going to define our own single precision floating point format. You are
free in your choice, however, execution time of your Mandelbrot algorithm should be faster as with the
build-in library.

For those who cannot come up with a proper floating point format, you can use:

‘30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10| 9ls|7]e6[5[4a][3]2]1]0
sign bit Exponent in
Excess-250

Magnitude, where 1.0 < mag <= 0.0

The steps to follow are equivalent as those for the fixed-point version.
The minimal set of files should contain programms/fractal_myflpt/include/fractal_myflpt.h,
programms/fractal_myflpt/src/fractal_myflpt.c, and programms/fractal_myflpt/src/main_myflpt.c.

2.4 Grading

The grading consists of:
1. Report: 15%
. Quality of the code: 15%
. Fixed-point type used: 15%

2
3
4. Working fixed-point algorithm on the virtual prototype: 20%
5. Floating-point functions implemented: 15%

6

. Working floating-point algorithm on the virtual prototype: 20%

2.5 Workflow

This practical work is done in 2 practical sessions, and handed in one week later on moodle. Your
submission should contain:

Your report in PDF format (max. 10 pages).

A .zip or .tgz file with all the source files (and they need to compile).

Version: 1.0 Last change: 07/10/2024 page 3 of 3

	Introduction
	Prerequisites
	Number systems

	Exercises
	Prerequisites
	Fixed point Mandelbrot
	Your own floating point format
	Grading
	Workflow

