=Pi-L

CS-473:
System p;ogrammmg
or
Systems on Chip

Practical work 4

Caches

Version:
1.0

E PFL CS-473 SPSOC Caches

Contents

1 Introduction 1
1.1 Prerequisites e e 1
1.2 Objectives 1
1.3 Requirements 1

2 Exercises 2
2.1 Structure Memory Layout and Caches 2
2.2 Programming Tasks 2

page Il of Il Last change: 01/11/2024 Version: 1.0

E PFL CS-473 SPSOC Caches

1 Introduction

1.1 Prerequisites

On moodle you find the file cache.zip; it contains the complete source code template for this practical
work. Download this file, and unzip it in the directory programms.

1.2 Objectives

In the scope of this practical work, you will learn about:
1. memory layouts of structures in C,
2. optimizing the memory layout for caches,
3. designing cache-friendly algorithms,
4

. the interaction between |/O devices and caches.

1.3 Requirements

Make sure that:
1. the project files are downloaded and extracted,
2. your Gecko board has the final version of the firmware,
3. the toolchain is functional (it should be orik-elf-gcc).

All the file paths mentioned in this document are relative to the downloaded archive.

Version: 1.0 Last change: 01/11/2024 page 1 of 8

E PFL CS-473 SPSOC Caches

2 Exercises

2.1 Structure Memory Layout and Caches

@ Please read “The Lost Art of Structure Packing” by Eric S. Raymond to answer
the questions in this section. It is available at: http://www.catb.org/esr/
structure-packing/.

Project cache_sweep under ./cache/sweep/ executes a C program summarized in Figure 2.1. The
program contains a struct item_t consisting of an ID and data, an array of item_ts, and function items_find
that finds an item_t with a given ID. The full source code of the program is available under ./cache/
sweep/src/datapoint/datapoint.c. The executable contains multiple versions of this program for
different configurations described by the following parameters:

1. PARAM_PACKED: item_t has the __packed modifier or not.
2. PARAM_DATALEN: length of field data of struct item_t.
3. PARAM_COUNT: length of the array.

We aim to analyze how these parameters affect (1) the code generated by the compiler and (2) the
number of data cache misses. Both plots in Figure 2.2 sweep PARAM_DATALEN. Figure 2.2a plots
sizeof (item_t). Figure 2.2b plots the number of data cache misses for function items_find. For all the
data points in Figure 2.2b, function items_find accesses all the array elements.

Questions:

1. What does the __packed modifier do? Note that __packed is defined in Figure 2.1. Online
resources and the compiler manual might help you with this part of the practical work.

2. Explain the memory layout of item_t with and without __packed and for PARAM_DATALEN
€ {1,2,3,4}. Specify (1) the ordering of the fields, (2) the size of each struct field, and
(3) padding bytes (the processor has a 32-bit alignment). You do not need to make a table;
however, be clear and concise!

3. Repeat the previous question for the memory layout of the array. Consider the first two array
elements.

4. How does __packed affect the number of cache misses? Why?

5. Consider the data series in Figure 2.2 that do not use __packed (i.e., the orange lines). What
is the cache line size for the data cache? Explain your approach.

6. How does __packed affect the generated assembly code size? Why? What does the compiler
do differently? Generated assembly file for each data point is available under ./cache/
sweep/build-release/src/datapoint/datapoint_COUNT_LENGTH_PACKED.s.

2.2 Programming Tasks

@ Please read Section 4 of “Cache-Conscious Data Structures” from Microsoft Research to
answer the questions in this section. It is available at: https://www.microsoft.com/
en-us/research/wp-content/uploads/2016/12/ccds. pdf.

page 2 of 8 Last change: 01/11/2024 Version: 1.0

http://www.catb.org/esr/structure-packing/
http://www.catb.org/esr/structure-packing/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/ccds.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/ccds.pdf

N

IS

©

26

E PFL CS-473 SPSOC Caches

/*x* @note defined in ‘defs.h'. x/
#define __packed __attribute__ ((packed))

/**% @brief Item struct. Relates an ‘id‘' to a piece of ‘data’. x/

typedef struct __packed /+ or nothing, depending on the configuration %/ {
uint32_t id;
char data [PARAM_DATALEN];

} oitem_t;

/*x @brief An array of items. =/
static item_t items[PARAM_COUNT];

/®%

* @brief Searches for an item matching the ‘id "
*

* @param id

* Q@return item_tx Pointer to the found item.

*
/
item_t*x items_find (uint32_t id) {
for (size_t i = 0; i < PARAM_COUNT; ++i) {
if (items[i].id = id)
return &items/[i];
}

return NULL;

Figure 2.1: A simplified version of the measured program. Each data point consists of PARAM_DATALEN
, PARAM_COUNT, and PARAM_PACKED. The program is compiled and executed for each
data point. PARAM_PACKED determines if the struct has ___packed modifier. For each data
point, we record sizeof (item_t) and the number of data cache misses.

Struct Size Data Cache Misses
1/ —e— Packed —e— Packed /././\
Not Packed / Not Packed
1 250 /

w
o

NN W
A 00 N

N
o
o

// 150] /,/
J |
7 i

._.
(o))
Number of Misses

Struct Size (bytes)
N
o

un
N
=
o
o

s/
4 - sof "
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Data Length (bytes) Data Length (bytes)
(a) Structure size for varying data length. (b) Number of data cache misses for varying data
length.

Figure 2.2: Both figures vary the data length (PARAM_DATALEN). Figure (b) is drawn for
PARAM_COUNT=256. The number of memory accesses is same as PARAM_COUNT.

Version: 1.0 Last change: 01/11/2024 page 3 of 8

IS

10

16

N

o

©

—

®

E PFL CS-473 SPSOC Caches

In this part of the assignment, you will modify the source of project cache_tasks under ./cache/
tasks/. Take a look at the directory structure and understand it. The project can be built, as usual,
by the following commands:

cd ./cache/tasks # enter the project directory

before executing make, make sure that the toolchain is in the PATH
export PATH=/opt/orlk_toolchain/bin /:$PATH

build the mem file ready to be uploaded
make mem1300

clean the built files
make clean

build and keep the intermediate assembler files for inspection
make mem1300 CFLAGS=—save—temps

build and also print the linker map
make mem1300 CFLAGS=—save—temps LDFLAGS=—WI,——print—map

As a first step, please check your setup:
1. Compile the project as described.
2. Upload the . cmem file and execute the program. Note that uploading might take up to 10 seconds.

The expected program output is the following (cache miss numbers might be slightly different):

taskl_main
sizeof (node_t) = 64:
struct layout for node_t:

member —> offset
node. id —> 0x000
node . data —> 0x004
node. next —> 0x038
node. prev —> 0x03c

H#0 —> #11 —> #6 —> #12 —> #9 —> #2 —> #4 —> #8 —> #1 —> #3 —> #7 —> #15 —> #14 —>
#13 —> #10 —> #5 —> Done.

Task 1: dcache misses: 42

task2_main

Item ID = 15, data = random data: 11

Task 2: dcache misses: 16
task3_main
Task 3: dcache misses: 65893

out_vector verification successful!
task4_main

original address: 0x50000800

new address: 0x08000800

page 4 of 8 Last change: 01/11/2024 Version: 1.0

E PFL CS-473 SPSOC Caches

Task 1: Optimize node_t

Consider the following source files:
./cache/tasks/src/taskl.c
./cache/tasks/src/node.c
./cache/tasks/include/node.h

struct node_t is defined in node.h and function node_count is defined in node.c:

#define NODE_DATALEN 52
typedef struct node_t node_t;
4
/%%
6/ * @brief Defines a node.
x @note **Do not removexx any fields from this structure.
s| */
struct node_t {
10 /** @brief Node ID. x/
unsigned id;
12
/** @brief Node data. x/
14 char data [NODE_DATALEN];
16 /x*% @brief The next node. x/
node_tx next;
18
/%% @brief The previous node. %/
20 node_tx*x prev;
s
uint32_t node_count(node_t* node) {
2 // YOU ARE NOT SUPPOSED TO MODIFY THIS.
26 uint32_t result = 0;
28 while (node) {
printf("#%u — ", node—>id);
30 result++;
node = node—>next;
32 }
34 printf("Done.\n");
36 return result;
}
Questions:

7. What accesses in function node_count cause cache misses? Why?

8. Propose a strategy to decrease the number data cache misses caused by function node_count.
Test your approach on the Gecko board. What is the new number of cache misses? Do not
modify the functions or remove fields from struct node_t.

(r) Note that node_count is unlikely to access node_ts that are adjacent in memory.

Version: 1.0 Last change: 01/11/2024 page 5 of 8

24

E PFL CS-473 SPSOC Caches

Task 2: Optimize item_t

Consider the following source files:
./cache/tasks/src/task2.c
./cache/tasks/src/item.c
./cache/tasks/include/item.h

struct item_t is defined in item.h; functions items_find and item_init are defined in item.c:

#define ITEM_DATALEN 32
typedef struct item_t item_t;

/%%
* Q@brief An item connects an ‘id‘ to ‘data’

*

*/

struct item_t {
/** @brief Item ID. %/
unsigned id;

/** @brief Item data. x/
char data[ITEM_DATALEN];

+;

item_t* items_find(item_t* items, size_t log2n, unsigned id) {
// YOU ARE NOT SUPPOSED TO MODIFY THIS.
for (size_t i = 0; i < (1 << log2n); ++i) {
if (items[i].id = id)
return &items/[i];

}
return NULL;

}

void item_init(item_t* item, uint32_t id, const charx data) {
// YOU CAN MODIFY THIS.
item—>id = id;

if (data != NULL)

memcpy (item—>data, data, ITEM_DATALEN);
else

memset (item—>data, 0, ITEM_DATALEN);

Questions:
9. What is the source of data cache misses in function items_find? Explain.

10. Propose a strategy to decrease the number data cache misses caused by function items_find.
Test your approach on the Gecko board. What is the new number of cache misses? You
can modify only function items_init. You can also modify struct items_t as long as it holds
the ID-data relationship.

@ Notice that function items_find accesses items_t objects that are adjacent in memory.

page 6 of 8 Last change: 01/11/2024 Version: 1.0

E PFL CS-473 SPSOC Caches

Task 3: Optimize Matrix-Vector Multiplication

Consider ./cache/tasks/src/task3.c. In this file, function multiply is defined as:

/* %

2| % @brief Multiplies the matrix with the input vector.
* Writes to the output vector.

*/

static void multiply () {

6 // YOU CAN MODIFY THIS.

8 for (int j = 0; j < MATRIX_N; ++j) {
for (int i = 0; i < MATRIX_N; ++i) {
10 out_vector[i] += matrix[i][j] * in_vector[j];
}
12 }
}
Questions:

11. Explain the terms row-major and column-major order. Which approach is used in C?

12. What accesses cause cache misses in function multiply ?

13. Propose a strategy to decrease the number data cache misses caused by function multiply.

Version: 1.0 Last change: 01/11/2024 page 7 of 8

N

©

24

34

36

38

40

44

E PFL CS-473 SPSOC Caches

Task 4: Bouncing Ball Example

Consider ./cache/tasks/src/task4.c. In this file, functions bouncing_ball and init_dcache are defined
as:

// old base address
#define LEDS_OLD_BASE 0x50000800ull

// new base address
#define LEDS_NEW_BASE 0x08000800ull

// pixel—based control of LEDs
#define LEDS_LEDS_OFFSET 0x400ull

// the base address is configurable.
// defines the offset of the base address register.
#define LEDS_BASEADDR_OFFSET 0x7FCull

void init_dcache() {
// YOU CAN MODIFY THIS.
dcache_enable (0);
dcache_write_cfg (CACHE_FOUR_WAY | CACHE_SIZE_4K | CACHE_REPLACE_LRU |
CACHE_WRITE_BACK) ;
dcache_enable(1);

}

void bouncing_ball() {
// YOU CAN MODIFY THIS.
int xdir, ydir, xpos, ypos, index;
volatile unsigned intx leds = (unsigned intx)(LEDS_NEW_BASE + LEDS_LEDS_OFFSET)

xdir = ydir = 1;
Xpos = ypos = 5;
while (1) {
index = ypos % 12 4 xpos;
leds [index] = 0;
if (ypos = 8)
ydir = —1,
if (ypos = 0)
ydir = 1;
if (xpos == 11)
xdir = —1;
if (xpos = 0)
xdir = 1;

ypos += ydir;
xpos += xdir;
index = ypos % 12 4 xpos;

leds[index] = swap_u32(2);
for (volatile long i = 0; i < 100000; i++)
}
}
Questions:

14. Why does not the bouncing ball work as expected? You should be observing no change in
the LEDs. The expected behavior is a single pixel moving and reflects as it bounces at the
edges.

15. Propose two approaches to fix the behavior.

page 8 of 8 Last change: 01/11/2024 Version: 1.0

	Introduction
	Prerequisites
	Objectives
	Requirements

	Exercises
	Structure Memory Layout and Caches
	Programming Tasks

