
Introduction to VHDL
Homework 2

Chang Meng

Original Slides by Alessandro Tempia Calvino

Integrated Systems Laboratory (LSI)
EPFL

September 26, 2024

1 / 28

VHDL

VHSIC (Very High Speed Integrated Circuit) Hardware Description Language

• A language to describe digital hardware systems

Uses:
• Modeling (documentation)
• Testing and validation (simulation)
• Design entry for automatic synthesis

2 / 28

VHDL

Goals:
• Make the design process more reliable, minimizing cost and time
• Avoid design errors
• Increase the design productivity

Other popular HDL languages:
• Verilog
• SystemC
• System Verilog

3 / 28

VHDL

VHDL..
• is case insensitive
• strongly typed
• comments −− till end of line

VHDL is not a programming language! It is a description language!
The keyword is concurrency!

4 / 28

VHDL

VHDL..
• is case insensitive
• strongly typed
• comments −− till end of line

VHDL is not a programming language! It is a description language!
The keyword is concurrency!

5 / 28

Example: Half-Adder

Half Adder
a

b

s

co

Signals:
• a, b: primary inputs
• s: sum
• co: carry out

Functions:
• s = a⊕ b

• co = a ∧ b

6 / 28

Example: Half-Adder

Half Adder
a

b

s

co

entity half_adder is
port (

a : in std_logic;
b : in std_logic;
s : out std_logic;
co : out std_logic

);
end half_adder;

7 / 28

Example: Half-Adder

• entity declares a new type of
component (e.g., “half_adder")

• port(); lists inputs and outputs of the
entity

• “a : in std_logic" → a is an input
port of type std_logic

• “s : out std_logic" → s is an
output port of type std_logic

• ports are separated by semicolons

entity half_adder is
port (

a : in std_logic;
b : in std_logic;
s : out std_logic;
co : out std_logic

);
end half_adder;

8 / 28

Library

Standard logic:
• IEEE 1164 standard
• package std_logic_1164: contains the enumerated types std_logic and std_ulogic

Library and standard package to always include:
library ieee;
use ieee.std_logic_1164.all;

9 / 28

Library

Possible values of std_logic type
• ’U’: uninitialized
• ’X’: unknown
• ’0’: logic 0
• ’1’: logic 1
• ’Z’: high impedance
• ’W’: weak unknown, can’t tell if 0 or 1
• ’L’: weak 0
• ’H’: weak 1
• ’-’: don’t care

10 / 28

Example: Half-Adder architecture

Half Adder
a

b

s

co

entity half_adder is
port (

a : in std_logic;
b : in std_logic;
s : out std_logic;
co : out std_logic

);
end half_adder;

architecture HA_df of half_adder is
begin

s <= a xor b;
co <= a and b;

end HA_df;

11 / 28

Example: Half-Adder architecture

The architecture defines the entity’s
functionality

• It describes the behavior or the inner
implementation of an entity

• There may be several architectures for
the same entity (for simulation, use
configurations!)

• Each architecture must be bound to
an entity

Signals are assigned with <=

entity half_adder is
port (

a : in std_logic;
b : in std_logic;
s : out std_logic;
co : out std_logic

);
end half_adder;

architecture HA_df of half_adder is
begin

s <= a xor b;
co <= a and b;

end HA_df;

12 / 28

Architecture

architecture architecture_name of name_of_entity is
-- Declarations

-- components
-- signals
-- constants
-- functions
-- procedures
-- types

begin
-- concurrent statements

end architecture_name;

13 / 28

Architecture

An architecture can be described in different abstraction levels:
• Dataflow
• Behavioral (process)
• Structural (component instantiation)
• Mixed

14 / 28

Architecture

Dataflow
architecture HA_df of half_adder is
begin

s <= a xor b;
co <= a and b;

end HA_df;

Behavioral
architecture HA_beh of half_adder is
begin

process(a, b) -- sensitivity list
begin

s <= a xor b;
co <= a and b;

end process;
end HA_beh;

Every assignment is concurrent! A process is one single concurrent
operation, statements are sequential,
concurrency among multiple interacting
processes

15 / 28

Example: Full-Adder

Full Adder

a

b

s

co
cin

Signals:
• a, b, cin: primary inputs
• s: sum
• co: carry out

Functions:
• s = a⊕ b ⊕ cin

• co = (a ∧ b) ∨ (a ∧ cin) ∨ (b ∧ cin)

16 / 28

Example: Full-Adder

entity full_adder is
port (

a : in std_logic;
b : in std_logic;
ci : in std_logic;
s : out std_logic;
co : out std_logic

);
end full_adder;

architecture FA_df of full_adder is
begin

s <= a xor b xor ci;
co <= (a and b) or (a and ci) or (b and ci);

end FA_df;
17 / 28

Example: Full-Adder

It can be constructed starting from two half adders and additional logic

Full Adder

a

b

s

co
cin

Functions:
• s = a⊕ b ⊕ cin

• co = ((a⊕ b) ∧ cin) ∨ (a ∧ b)

18 / 28

Example: Full-Adder

It can be constructed starting from two half adders and additional logic

cin

Half Adder 1

Half Adder 2
s1_s

co1_s

co2_s

19 / 28

Example: Full-Adder

Define a mixed architecture:
• Component declaration:

match the corresponding
entity declaration exactly

• Use of signals for the
internal connections

• Component instantiation:
occurrence of a component
in a circuit

architecture FA_struct of full_adder is
component half_adder is

port (
a : in std_logic;
b : in std_logic;
s : out std_logic;
co : out std_logic);

end component;

signal s1_s, co1_s, co2_s : std_logic;
begin

HA_1: half_adder port map (a, b, s1_s, co1_s);
HA_2: half_adder port map (ci, s1_s, s, co2_s);
co <= co1_s or co2_s;

end FA_struct;
20 / 28

Example: Full-Adder

Component instantiation:
• Label for the name of the

instance (e.g., “HA_1:”)
• Name of the entity
• port map: maps component

ports to signals (HA_1 is
specified, HA_2 is
positional)

HA_1: half_adder port map (a => a,
b => b,
s => s1_s,
co => co1_s);

HA_2: half_adder port map (ci, s1_s, s, co2_s);

21 / 28

Example: 2-bit Ripple Carry Adder

• Adds 2-bit numbers A and B
• 2-bit output sum
• 1-bit output carry

entity adder2 is
port (

a : in std_logic_vector(1 downto 0);
b : in std_logic_vector(1 downto 0);
s : out std_logic_vector(1 downto 0);
co : out std_logic

);
end adder2;

22 / 28

Example: 2-bit Ripple Carry Adder

std_logic_vector:
• indexed collection of std_logic
• indices can have a range that is descending or ascending

6 downto 0
MSB LSB

0 to 6

• TIP: stick to downto for normal vectors of std_logic (to is usually used in matrices)

23 / 28

Example: 2-bit Ripple Carry Adder

entity adder2 is
port (

a : in std_logic_vector(1 downto 0);
b : in std_logic_vector(1 downto 0);
s : out std_logic_vector(1 downto 0);
co : out std_logic

);
end adder2;

architecture adder_struct of adder2 is
component half_adder is

port (
a : in std_logic;
b : in std_logic;
s : out std_logic;
co : out std_logic);

end component;

component full_adder is
port (

a : in std_logic;
b : in std_logic;
ci : in std_logic;
s : out std_logic;
co : out std_logic

);
end component;

signal co1_s: std_logic;
begin

HA_1: half_adder port map (a(0), b(0), s(0), co1_s);
FA_1: full_adder port map (a(1), b(1),

co1_s, s(1), co);
end adder_struct;

24 / 28

Simulation

Testbench
• Not synthesizable VHDL code (cannot be translated to a physical design)
• Used for simulation → generate waveforms
• Used to check if the behavior looks correct
• Provides input values, the simulator generates output values
• It can assert expected output values

25 / 28

Simulation

entity adder_tb is
end added_tb;

architecture tb of adder_tb is
component adder2 is

port (
a : in std_logic_vector(1 downto 0);
b : in std_logic_vector(1 downto 0);
s : out std_logic_vector(1 downto 0);
co : out std_logic

);
end component;

signal a_s, b_s, s_s : std_logic_vector(1 downto 0);
signal co_s : std_logic;

begin
DUT: adder2 port map (a_s, b_s, s_s, co_s);

process
begin

-- test all the input combinations
a_s <= "00"; b_s <= "00";
wait for 10 ns;
a_s <= "00"; b_s <= "01";
wait for 10 ns;
a_s <= "00"; b_s <= "10";
wait for 10 ns; -- etc

end process;
end tb;

26 / 28

Shifting

Multiplications or divisions by powers of 2 or shifts can be realised as follows:

signal s, s_shift : std_logic_vector(7 downto 0);

-- multiplication by 4
s_shift <= s(5 downto 0) & "00";

-- division by 8
s_shift <= "000" & s(7 downto 3);

27 / 28

References

Books
• Vahid, F., 2007, VHDL for digital design, John Wiley & Sons
• Rushton, A., 2011. VHDL for logic synthesis, John Wiley & Sons

Online books
• Free Range VHDL

Web
• https://vhdlguide.readthedocs.io/en/latest/index.html
• https://www.doulos.com/knowhow/vhdl_designers_guide/

28 / 28

http://freerangefactory.org
https://vhdlguide.readthedocs.io/en/latest/index.html
https://www.doulos.com/knowhow/vhdl_designers_guide/

	Introduction
	Example Half-Adder
	Example Full-Adder

