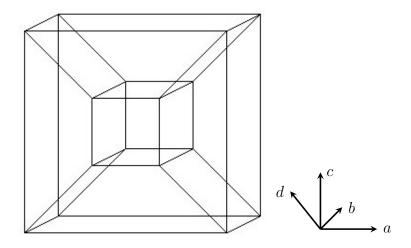
## CS-472: Design Technologies for Integrated Systems

Date: 08/10/2024

Exercise Problem Set 5

Topic: Resource sharing (cf. slide set 6), two-level logic synthesis (cf. slide set 7)

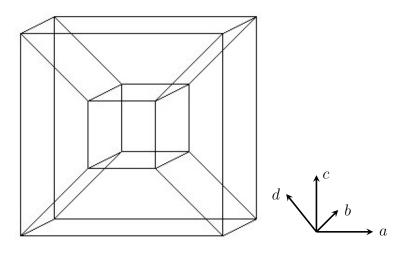
## Problem 1


Consider the following set of scheduled operations.

| operation ID | latency | start time | resource type |
|--------------|---------|------------|---------------|
| 1            | 1       | 1          | ALU           |
| 2            | 2       | 1          | ALU           |
| 3            | 4       | 2          | ALU           |
| 4            | 3       | 2          | ALU           |
| 5            | 2       | 5          | ALU           |
| 6            | 2       | 2          | ALU           |
| 7            | 3       | 6          | ALU           |
| 8            | 4       | 5          | ALU           |
| 9            | 2       | 4          | ALU           |

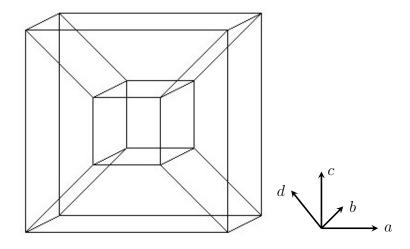
- (a) Draw the interval and conflict graphs.
- (b) Determine the minimum number of ALUs needed using the left-edge algorithm. Show the coloring in both interval and conflict graphs.

## Problem 2


Given the function  $F = \bar{a}d + ac + a\bar{b}\bar{c}$ 



- (a) Draw the minterms on the cube
- (b) Use the cube to show if the following cubes are contained in F:
  - $\bullet$  cd
  - *ad*


## Problem 3

Given the function  $F = \bar{a}b\bar{c} + a\bar{c}d + \bar{a}cd + ac\bar{d} + bd$ 



- (a) Draw the minterms on the cube.
- (b) List all the primes (also on the cube).
- (c) List all the essential primes.
- (d) Find a minimum cover using McCluskey's method.

(e) Show the obtained cover on the cube.

