CS-472: Design Technologies for Integrated Systems

Date: 19/10/2023

Exercise Problem Set 5 Solution

Topic: Resource sharing (cf. slide set 6), two-level logic synthesis (cf. slide set 7)

Problem 1

Consider the following set of scheduled operations.

operation ID	latency	start time	resource type	
1	1	1	ALU	
2	2	1	ALU	
3	4	2	ALU	
4	3	2	ALU	
5	2	5	ALU	
6	2	2	ALU	
7	3	6	ALU	
8	4	5	ALU	
9	2	4	ALU	

cf: Slide set 6 pp. 13–15.

(a) Draw the interval and conflict graphs.

Ans: (The interval graph can also be drawn left-to-right.)

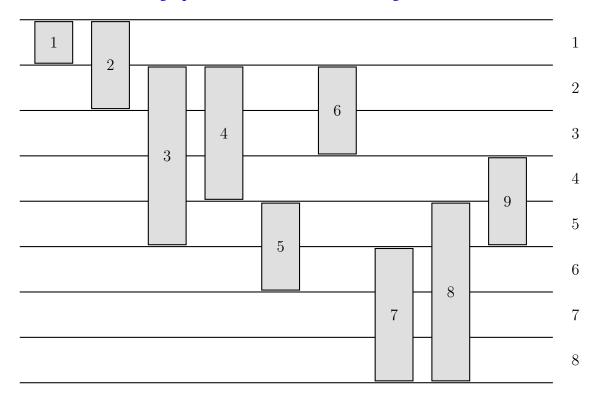


Figure 1: Interval graph

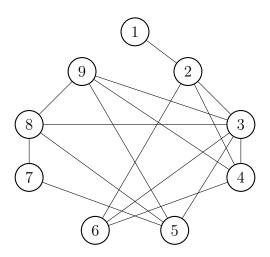


Figure 2: Conflict graph

(b) Determine the minimum number of ALUs needed using the left-edge algorithm. Show the coloring in both interval and conflict graphs.

Ans: At least 4 ALUs are needed. (The interval graph can also be drawn left-to-right, and it is not unique.)

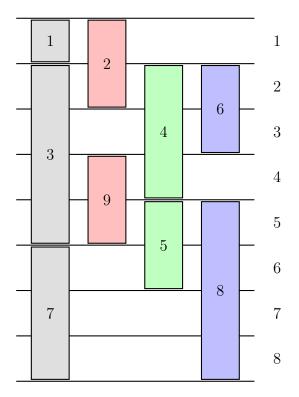
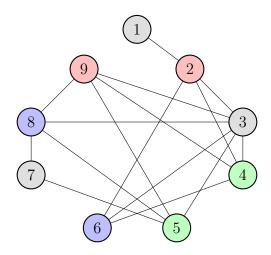
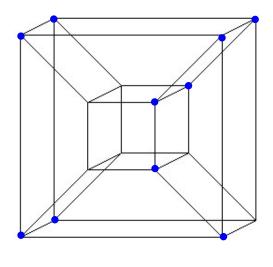
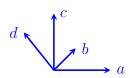


Figure 3: Colored interval graph

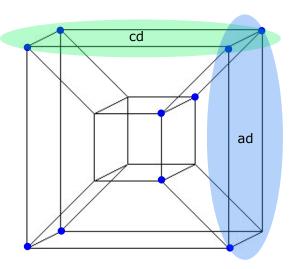




Figure 4: Colored conflict graph

Problem 2

Given the function $F = \bar{a}d + ac + a\bar{b}\bar{c}$

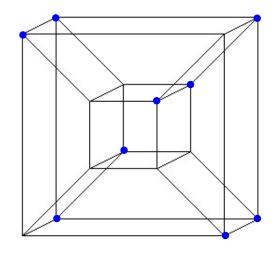
(a) Draw the minterms on the cube *Ans*:

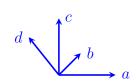


- (b) Use the cube to show if the following cubes are contained in F:
 - *cd*
 - *ad*

Ans:

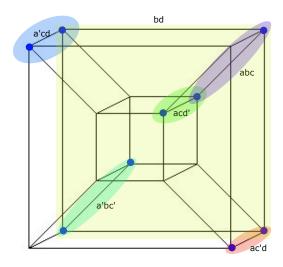
cd is contained while ad is not contained since minterm $ab\bar{c}d$ is not in the ON-set.

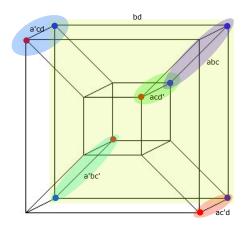



Problem 3

Given the function $F = \bar{a}b\bar{c} + a\bar{c}d + \bar{a}cd + ac\bar{d} + bd$

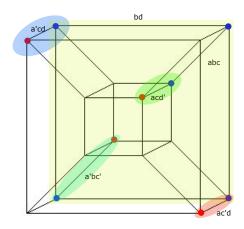
(a) Draw the minterms on the cube.


Ans: $\bar{a}b\bar{c}d, \bar{a}b\bar{c}d, a\bar{b}\bar{c}d, ab\bar{c}d, \bar{a}\bar{b}cd, \bar{a}bcd, a\bar{b}c\bar{d}, abc\bar{d}, abc\bar{d}$


(b) List all the primes (also on the cube).

Ans: $\bar{a}cd$, $\bar{a}b\bar{c}$, $a\bar{c}d$, $ac\bar{d}$, abc, bd

(c) List all the essential primes.


Ans: $\bar{a}cd$, $\bar{a}b\bar{c}$, $a\bar{c}d$, $ac\bar{d}$

(d) Find a minimum cover using McCluskey's method. *Ans:*

	$\bar{a}b\bar{c}$	$a\bar{c}d$	$\bar{a}cd$	acd	abc	bd
0011			1			
0100	1					
0101	1					1
0111			1			1
1001		1				
1010				1		
1101		1				1
1110				1	1	
1111					1	1

(e) Show the obtained cover on the cube. *Ans:*

