# **CS-472: Design Technologies for Integrated Systems**

Date: 03/10/2024

Exercise Problem Set 4

Topic: Scheduling (cf. slide set 5)

For all problems, consider the following sequencing graph.

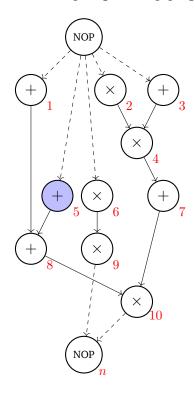



Figure 1: Sequencing graph

## Problem 1

Assume all operations have unit execution delay.

- (a) Schedule the graph with ASAP.
- (b) Schedule the graph with ALAP and a latency bound  $\bar{\lambda}$  of 5 cycles.
- (c) Compute the mobility of each operation.

## Problem 2

Schedule the sequencing graph using the list algorithm with at most two multipliers and one adder (at the same time per level). Assume that the multiplier takes two units of time and the adder one. Try to obtain the minimum latency subject to the resource bounds.

### **Problem 3**

Assume again that the multiplier takes two units of time and the adder one, and that at most two multipliers and one adder are available at the same time.

- (a) Write down the integer linear programming (ILP) inequalities describing the sequencing graph and subject to the resource constraints. Use an upper bound on the latency  $\bar{\lambda}=9$ .
- (b) What variable assignment correspond to the solution you obtained in Problem 2? Plug these values into the inequalities. Are they all satisfied?

#### Problem 4

Assume now all operations have unit delays. Consider an upper bound on the latency  $\bar{\lambda}=5$ . Use a force calculation schedule the colored operation (node 5) to reduce concurrency.

Table 1: Time frames obtained from ASAP and ALAP ( $\bar{\lambda} = 5$ ), mobility  $\mu$  and probabilities  $p_i(l)$ 

|          | $t_S$ | $t_L$ | $L_1$ | $L_2$ | $L_3$ | $L_4$ | $L_5$ | $\mu$ | $p_i(1)$ | $p_i(2)$ | $p_i(3)$ | $p_i(4)$ | $p_i(5)$ | type       |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|----------|----------|----------|------------|
| $v_1$    |       |       |       |       |       |       |       |       |          |          |          |          |          | adder      |
| $v_2$    |       |       |       |       |       |       |       |       |          |          |          |          |          | multiplier |
| $v_3$    |       |       |       |       |       |       |       |       |          |          |          |          |          | adder      |
| $v_4$    |       |       |       |       |       |       |       |       |          |          |          |          |          | multiplier |
| $v_5$    |       |       |       |       |       |       |       |       |          |          |          |          |          | adder      |
| $v_6$    |       |       |       |       |       |       |       |       |          |          |          |          |          | multiplier |
| $v_7$    |       |       |       |       |       |       |       |       |          |          |          |          |          | adder      |
| $v_8$    |       |       |       |       |       |       |       |       |          |          |          |          |          | adder      |
| $v_9$    |       |       |       |       |       |       |       |       |          |          |          |          |          | multiplier |
| $v_{10}$ |       |       |       |       |       |       |       |       |          |          |          |          |          | multiplier |

Table 2: Type distributions  $q_k(l)$ 

| J I      |          |          |          |          |   |            |          |          |          |          |
|----------|----------|----------|----------|----------|---|------------|----------|----------|----------|----------|
| adder    |          |          |          |          |   | multiplier |          |          |          |          |
| $q_a(1)$ | $q_a(2)$ | $q_a(3)$ | $q_a(4)$ | $q_a(5)$ |   | $q_m(1)$   | $q_m(2)$ | $q_m(3)$ | $q_m(4)$ | $q_m(5)$ |
|          |          |          |          |          |   |            |          |          |          |          |
|          |          |          |          |          |   |            |          |          |          |          |
|          |          |          |          |          |   |            |          |          |          |          |
| I        |          |          |          |          | 1 | [          |          |          |          |          |

Table 3: Force calculation of  $v_5$ 

|       | Self-force | PS-force | Total force |
|-------|------------|----------|-------------|
| $L_1$ |            |          |             |
|       |            |          |             |
|       |            |          |             |
|       |            |          |             |
| -     |            |          |             |
| $L_2$ |            |          |             |
|       |            |          |             |
|       |            |          |             |
|       |            |          |             |
| $L_3$ |            |          |             |
| L3    |            |          |             |
|       |            |          |             |
|       |            |          |             |
|       |            |          |             |

Conclusion: The smallest force is in \_\_\_\_\_, thus we should schedule  $v_5$  at this level to reduce concurrency.