CS-472: Design Technologies for Integrated Systems

Date: 03/10/2024

Exercise Problem Set 3 Solution

Topics: Control-flow expressions, finite state machines (cf. slide set 3); data flow optimization (cf. slide set 4)

Problem 1

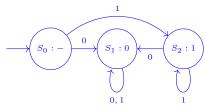
Given the following three pieces of HDL pseudo-code:

```
while (a)
                         wait (d)
                                                  always
                                                  {
  while (b)
                           while (!e)
                                                     if(f)
  {
                              Ρ4
                                                       P5
                                                  }
     if (c)
       P1
     else
       P2
  }
  ΡЗ
}
```

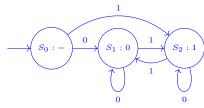
Write the control-flow expression that executes the three codes *in parallel*. Use parentheses properly for nested expressions to avoid ambiguity.

```
Ans: \left(a:\left(\left(b:(c:P1+\bar{c}:P2)\right)^*\cdot P3\right)\right)^* \parallel \left((\bar{d}:0)^*\cdot(\bar{e}:P4)^*\right) \parallel \left(f:P5\right)^{\omega}
```

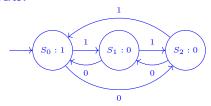
Problem 2


cf: Slide set 3, pp. 26.

For the following specifications, draw a deterministic finite state machine that implements it. The machines receive a non-empty bit stream $(b_0, b_1, \ldots, b_{n-1})$ as input, where $b_i \in \{0, 1\} \forall i$, and output $o \in \{0, 1\}$ which may change upon receiving a new input bit. The length n of the stream can be any finite positive integer and is unknown to the machine. The machines need to be correct for all n seen during the process as if the input bits received so far is the entire bit stream. The output before receiving any input, if any (i.e. if it is a Moore machine), can be ignored.


Let #0 denote the number of 0 bits in the stream, and let #1 denote the number of 1 bits in the stream. We say a FSM *accepts* a stream if it outputs o=1 when the stream is completely fed into the machine.

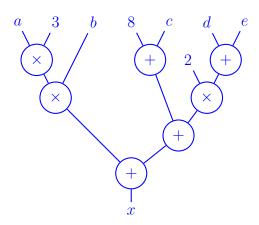
Recall that a finite state machine must have a *finite* number of states, and the number of states cannot be an unknown number. Also note that for a FSM to be *deterministic*, the transition under every possible input at every reachable state must be specified and unique. Some machines may be impossible to construct; explain why if you think so.


(a) Construct a FSM which implements the AND operation, i.e., $o = b_0 \wedge b_1 \wedge \cdots \wedge b_n$. *Ans*:

(b) Construct a FSM which implements the XOR operation, i.e., $o = b_0 \oplus b_1 \oplus \cdots \oplus b_n$. *Ans:*

- (c) Construct a FSM which accepts a stream where #0 = #1. *Ans:* It is impossible to construct such a machine with finite states because we need to keep track of the difference between #0 and #1 of the current (sub-)stream at any time, which we do not have a known upper bound.
- (d) Construct a FSM which accepts a stream where $(\#0 \mod 3) = (\#1 \mod 3)$. *Ans:*

Problem 3

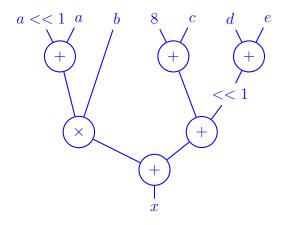

Given the following equations:

$$x_1 = (a \times 3);$$

 $x_2 = b;$
 $x_3 = (5 + c);$
 $x_4 = (d + e);$
 $x = (x_1 \times x_2) + 3 + x_3 + (x_4 \times 2);$

where inputs are a, b, c, d, e, while the output is x.

(a) Apply variable and constant propagation, and draw the data-flow graph. Assume all additions and multiplications have 2 inputs.


Ans:

(b) Apply *operator strength reduction* on the data-flow graph from point (a). Assume that shifting takes no latency. Draw the resulting data-flow graph.

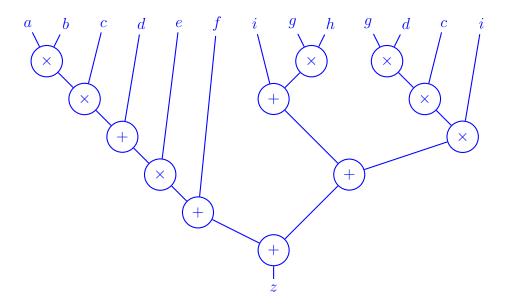
cf: Slide set 4, pp. 20.

Ans:

Problem 4

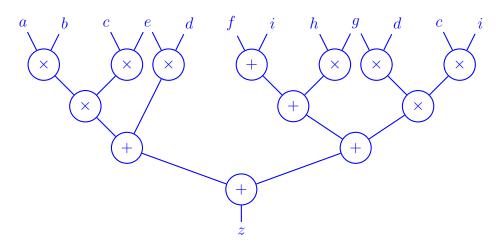
Consider the following equations:

$$x = (a \times b \times c + d) \times e$$


$$w = x + f$$

$$y = i + g \times h + (g \times d \times c \times i)$$

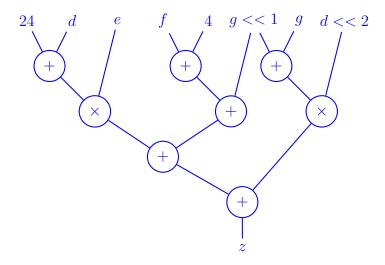
$$z = w + y$$


where inputs are a, b, c, d, e, f, g, h, i, while the output is z.

(a) Draw the data-flow graph using the operations as they appear in the expression, without any optimization. Assume additions and multiplications have 2 inputs. *Ans:*

(b) Apply tree-height reduction to the data-flow graph drawn in (a).

cf: Slide set 4, pp. 15-17. Ans:



(c) Discuss on the different resources usage between the graph in (a) and the graph in (b).

Ans: The data-flow in point (b) needs more resources than the one in point (a) since by optimizing the height more operations are executed in parallel.

(d) Assume that a=4, b=2, c=3, h=2, and i=4 are constant. Optimize the data-flow graph from (a) using the behavioral optimization techniques seen during the lecture. Draw the resulting data-flow graph.

Ans:

