CS-472: Design Technologies for Integrated Systems

Exercise Problem Set 2 Solution Date: 26/09/2024

Problem 1

Given the following function: $f(a, b, c) = a\bar{b}c + bc + \bar{a}b\bar{c}$

(a) Write the truth table.

Ans:

(b) Write the function in terms of its minterms.

Ans:
$$f(a,b,c) = \bar{a}b\bar{c} + \bar{a}bc + a\bar{b}c + abc$$

(c) Write the function using only NAND-2 gates.

Ans:
$$f(a,b,c) = ((a \bar{\wedge} a) \bar{\wedge} b) \bar{\wedge} (a \bar{\wedge} c)$$

Problem 2

A truth table is a complete listing of all points in a Boolean input space and the corresponding output values. For example, the two-input AND function has the following truth table:

$$\begin{array}{c|ccc} x_1 & x_0 & x_0x_1 \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

To compactly represent a truth table, we can use a bitstring $b_{2^n-1} \dots b_1 b_0$ where $b_x = f(w_1, \dots, w_n)$ when $w = (x_n \dots x_1)_2$. Each bit in the bitstring corresponds to the output of f evaluated at some assignment to its variables. The most-significant bit b_{2^n-1} corresponds to all variables assigned to 1, $f(1, \dots, 1)$ and the least-significant bit b_0 correspond to $f(0, \dots, 0)$. Using this compact representation, the two-input AND function is 1000.

Table 1: The	sixteen log	rical or	perations	on two	variables	f(a	r u
Table 1. III	JIMICCII IUE	sicui O	peranons	OII LVVO	variabics,	1 \ J	v, y_1 .

Truth table	Notation(s)	Name
0000		Contradiction; antilogy; constant 0
0001	$x \vee y, x \downarrow y$	Nondisjunction; NOR
0010		Converse nonimplication
0011	x' , $\neg x$, \bar{x}	Left complementation
0100		Nonimplication
0101	y' , $\neg y$, \bar{y}	Right complementation
0110	$x \oplus y$	Exclusive disjunction; nonequivalence; XOR
0111	$x \bar{\wedge} y, \uparrow y$	Nonconjuction; NAND
1000	$x \cdot y$, xy , $x \wedge y$	Conjunction; AND
1001	$x \equiv y, x \Leftrightarrow y$	Equivalence
1010	y	Right projection
1011	$x \Rightarrow y$	Implication
1100	x	Left projection
1101	$x \Leftarrow y$	Converse implication
1110	$x + y$, $x \vee y$	Disjunction; OR
1111	Т	Affirmation; tautology; constant 1

(a) Suppose that on a remote country logicians use the symbol 1 for "false" and 0 for "true". How do our logical operations associate to theirs?

For example, they have a binary operation "or"

1 or
$$1 = 1$$
, 1 or $0 = 0$, 0 or $1 = 0$, 0 or $0 = 0$

which we associate with AND (1000).

Ans: The dual of a Boolean function is the expression that can be obtained by interchanging AND and OR operations and interchanging 0's and 1's. The dual function of $f=x\circ y$ is denoted by $f^d=\overline{x}\circ\overline{y}$ and therefore one truth table is the reverse of the complement of the other. Thus, the two countries associate by duality.

For instance, the dual function of $f = a\bar{b} + c$ is $f^d = (a + \bar{b})c$.

As an interesting case, some functions are self-dual. This means that $f=f^d$. For instance the majority operation MAJ(a,b,c)=ab+ac+bc is self-dual.

(b) All operations in Table 1 can be expressed in terms of NAND. For each of the 16 operations in the table find a formula equivalent to the function that uses only two-input NAND. The formula should be as short as possible and not contain any constant.

Ans:

4. [Trans. Amer. Math. Soc. **14** (1913), 481–488.] (a) Start with the truth tables for \bot and В; then compute truth table $α \overline{\land} β$ bitwise from each known pair of truth tables α and β, generating the results in order of the length of each formula and writing down a shortest formula that leads to each new 4-bit table:

(c) Similarly, find 16 short formulas when constants are allowed.

Ans:

(b) In this case we start with four tables \bot , \top , \bot , R, and we prefer formulas with fewer occurrences of variables whenever there's a choice between formulas of a given length:

⊥: 0	$\overline{\lor}:\ 1\overline{\land}((y\overline{\land}1)\overline{\land}(x\overline{\land}1))$
$\wedge \colon (x \overline{\wedge} y) \overline{\wedge} 1$	$\equiv : (x \overline{\wedge} y) \overline{\wedge} ((y \overline{\wedge} 1) \overline{\wedge} (x \overline{\wedge} 1))$
$\supset : ((y \land 1) \land x) \land 1$	$ar{\mathrel{R}}\colon y\ ar{\mathrel{\wedge}}\ 1$
\sqcup : x	$\subset : \ y \overline{\wedge} (x \overline{\wedge} 1)$
$\overline{\subset} \colon (y \overline{\wedge} (x \overline{\wedge} 1)) \overline{\wedge} 1$	$\bar{\sqsubseteq} : x \bar{\wedge} 1$
$R\colon \mathit{y}$	$\supset : (y \bar{\wedge} 1) \bar{\wedge} x$
$\oplus \colon \left(y \mathbin{\overline{\wedge}} (x \mathbin{\overline{\wedge}} 1)\right) \mathbin{\overline{\wedge}} \left(\left(y \mathbin{\overline{\wedge}} 1\right) \mathbin{\overline{\wedge}} x\right)$	$\overline{\wedge}\colon\thinspace x\overline{\wedge} y$
$\vee : \ (y \overline{\wedge} 1) \overline{\wedge} (x \overline{\wedge} 1)$	⊤: 1

(d) For each of the 16 operations in the table try to find a formula equivalent to the function using only the two-input XOR operator (⊕) and without the use of constants 0 or 1. Is it possible? Why?

Ans: It is not possible since XOR is not functionally complete.

(e) Consider the previous exercise using the material implication (\Rightarrow) as basis operator instead of \oplus .

Ans: Only some solutions are possible:

```
(a) \bot: x \subset x; \land: (x \subset y) \subset y; \supset: y \subset x; \bot: x; \subset: x \subset y; \triangleright: y;
```

(f) If the use of constants is allowed, how would it affect the answer for (e)?

Ans:

```
\perp: 0
                                                                                                                                                         \overline{\lor}:\ y\overline{\subset}(x\overline{\subset}1)
\wedge: (y \overline{\subset} 1) \overline{\subset} x
                                                                                                                                                        \equiv : (y \overline{\subset} x) \overline{\subset} ((x \overline{\subset} y) \overline{\subset} 1)
\exists : y \subseteq x
                                                                                                                                                        \bar{\mathbb{R}}:\ y \bar{\subset} 1
\bot: x
                                                                                                                                                        \subset : (x \overline{\subset} y) \overline{\subset} 1
\overline{\subset} : x \overline{\subset} y
                                                                                                                                                        \bar{\sqsubseteq}: x \bar{\subset} 1
R\colon y
                                                                                                                                                        \supset : (y \overline{\subset} x) \overline{\subset} 1
\oplus\colon \left( (y\,\overline{\subset}\,x)\,\overline{\subset}\,((x\,\overline{\subset}\,y)\,\overline{\subset}\,1) \right) \overline{\subset}\,1
                                                                                                                                                        \overline{\wedge}: ((y \overline{\subset} 1) \overline{\subset} x) \overline{\subset} 1
\vee: (y \subset (x \subset 1)) \subset 1
                                                                                                                                                        \top: 1
```

(Solutions in exercises 2.b, 2.c, 2.e, and 2.f are taken from the book *The Art of Computer Programming, Donald Knuth*, thus some of the symbols are different.)