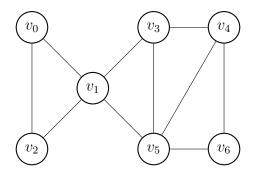
CS-472: Design Technologies for Integrated Systems

Date: 19/09/2024

Exercise Problem Set 1 Solution

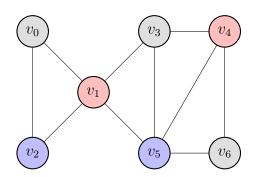
Problem 1

Given the graph G(V, E) below:



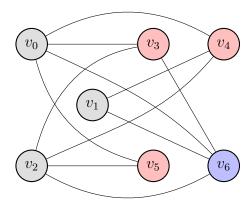
cf: Textbook pp.40-42.

(a) Color the graph with the smallest number of colors. *Ans:*



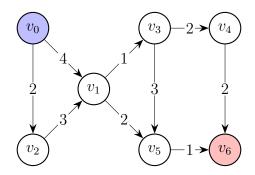
- (b) Show a minimum clique cover. *Ans:* (For example; not unique) $\{v_0, v_1, v_2\}, \{v_1, v_3, v_5\}, \{v_4, v_5, v_6\}$
- (c) Show a minimum clique partition. *Ans*: (For example; not unique) $\{v_0, v_1, v_2\}, \{v_3, v_4, v_5\}, \{v_6\}$ (This could also be an answer for (b).)
- (d) Is G a perfect graph? Why or why not? *Ans*:
 - 1. The *clique number* $\omega(G) = 3$ (i.e. size of the largest clique, e.g. $\{v_0, v_1, v_2\}$).
 - 2. The chromatic number $\chi(G)=3$ (i.e. minimum number of colors needed, as in (a)).
 - 3. The stability number $\alpha(G) = 3$ (i.e. size of the largest stable set, e.g. $\{v_0, v_3, v_6\}$).

- 4. The clique cover number $\kappa(G)=3$ (i.e. size of the minimum clique cover, as in (b)).
- $\omega(G)=\chi(G)$ and $\alpha(G)=\kappa(G)$, so G is a perfect graph.
- (e) Draw the complement graph.
- (f) Color the complement graph with the smallest number of colors. *Ans:* (e)+(f). Note that this coloring corresponds to the solution of (c).



Problem 2

Given the directed acyclic graph G(V, E, W) below:



Find the shortest path from the *source* v_0 to the *sink* v_6 by applying the following algorithms:

cf: Textbook pp.55.

(a) Dijkstra algorithm.

$v_q =$	v_0	v_2	v_1	v_3	v_5	v_4	v_6
$\overline{s_0}$	0	0	0	0	0	0	0
s_1	4	4	4	4	4	4	4
s_2	2	2	2	2	2	2	2
s_3	∞	∞	(4+1)	5	5	5	5
s_4	∞	∞	∞	(5+2)	7	7	7
s_5	∞	∞	(4+2)	6	6	6	6
s_6	∞	∞	∞	∞	(6+1)	7	7

Ans: Shortest path: $v_0 \rightarrow v_1 \rightarrow v_5 \rightarrow v_6 \text{ [cost = 7]}$

(b) Bellman-Ford algorithm.

j	1	2	3	4
$\overline{s_0}$	0	0	0	0
s_1	4	4	4	4
s_2	2	2	2	2
s_3	∞	(4+1)	5	5
s_4	∞	∞	(5+2)	7
s_5	∞	(4+2)	6	6
s_6	∞	∞	(6+1)	7

Ans: Shortest path: $v_0 \rightarrow v_1 \rightarrow v_5 \rightarrow v_6 \text{ [cost = 7]}$