
Cofactoring Using The Positional Cube Notation

October 2024

1 Introduction

In this document we discuss how to compute the cofactor of a function H
with respect to an implicant β. We do so using a graphical approach and
the positional cube notation. The discussion uses the function H : B4 → B

H = a′d+ ac+ ab′c′ (1)

Figure 1 shows the function H and the implicants listed in the definition. We
want to compute the cofactor of H with respect to the cube

β = cd (2)

So the goal is to evaluate
Hβ = Hcd =? (3)

We first do it graphically, and then do it using the positional cube notation.

2 Graphical Approach

Computing the cofactor of H with respect to β corresponds to projecting the
function H onto the sub-space defined by β. This is graphically represented in
Figure 2. From this graphical analysis we can observe that β = cd is contained
in H, i.e.,

β = cd ⊆ H (4)

The reason is that every minterm of β = cd is also a minterm of H. As you
can see from Figure 2, if an implicant is contained in a function H, then the
generalized cofactor is a tautology

Hβ = ⊤ (5)

This provides an operational strategy for checking if an implicant is contained
in a function:

1. Compute the cofactor Hβ

2. Check if the cofactor is a tautology.

The question is: how can we do the same thing in a non graphical way? What
kind of data structure can we use and how can we manipulate it?

1

Figure 1: Initial cube and the implicants used for the cover

3 Positional Cube Notation Approach

The positional cube notation is a binary encoding of implicants that allows us to
efficiently manipulate Boolean functions through bitwise operations. Remember
that our goal is to compute the cofactor of H with respect to the cube β = cd.

We start by constructing a table in which each row is associated to a cube
and each column to a variable. Since the cube a′d intersects the cubes a′ and
d, we put a 0 and a 1 in the column a and d. Since the cube a′d intersects both
b, b′, c and c′, we put a don’t care (∗) in the column of these variables.

a b c d
α1 = a′d 0 ∗ ∗ 1
α2 = ac 1 ∗ 1 ∗
α3 = ab′c′ 1 0 0 ∗

Table 1: Step 1 of building the encoding

2

Figure 2: Initial cube and the implicants used for the cover

After this, we introducing the positional cube notation encoding:

∅ 00
1 01
0 10
∗ 11

Table 2: Encoding of the positional cube notation.

We can now rewrite the table representing the function H as

a b c d
α1 = a′d 10 11 11 01
α2 = ac 01 11 01 11
α3 = ab′c′ 01 10 10 11

Table 3: Step 2: express the function using the positional cube notation.

Similarly, the cube β = cd reads

a b c d
β = cd 11 11 01 01

Table 4: Step 3: express the cube with respect to which we want to compute
the cofactor in the positional cube notation.

Now we need to compute the cofactor Hcd. The cofactor is also a Boolean
function, so we can represent it with a table just like we did for H. The first
thing to notice is that we can create a table whose rows are associated to the

3

same cubes of the function H. Indeed, based on the intuition gained while
discussing the graphical approach, the cofactor is the projection of the function
onto the subspace in which β is 1. Since it is a projection, it is impossible that
new cubes appear, so that we can safely use the same cubes that are present in
the cover for H. This implies that the problem of computing the cofactor Hβ

corresponds to the problem of filling in the entries of Table 8

a b c d
a′dβ x1ay1a x1by1b x1cy1c x1dy1d
acβ x2ay2a x2by2b x2cy2c x2dy2d
ab′c′β x3ay3a x3by3b x3cy2c x3dy3d

Table 5: Table of Hβ to be defined

The question is: how do we get the terms xijyij knowing the positional cube
expression of H and β? The answer is divided into two steps:

1. Remove the implicants that have a void intersection with β.

2. Perform the projection of cubes that have a non-void intersection with β.

3.1 Checking for void intersection

Two cubes α and β have void intersection when α∩ β = ∅. When representing
the cubes as products of literals, the intersection is in one to one correspondence
with the Boolean AND operator. For instance, the cubes α3 = ab′c′ and β = cd
have void intersection because α3 · β = ab′(c′ · c)d = 0. Figure 2 graphically
shows that these cubes have void intersection. Clearly, you can easily see if two
cubes have void intersection just by taking the bitwise AND, as we did for α3

and β. However, to gain confidence with the positional cube notation, let us see
how this bitwise operation translates to operations between covers.

In the positional cube notation we can check for void intersection in the same
way, just by performing the bitwise AND between the terms. Let us consider
simple literals

1. x · x′ = 0 ⇔ 01 · 10 = 00, which is the empty set.

2. ∗ · x = x ⇔ 11 · 01 = 01.

3. ∗ · x′ = x′ ⇔ 11 · 10 = 10.

If we now consider more complex cubes α and β, built as the product of literals,
it should be clear that performing the bitwise AND of each column element in
the positional cube notation, it is sufficient that a single column entry is 00 to
conclude that the intersection between the cubes is the empty set. Let us do it
for the cube α = ab′c′:

α3 · β =
[
01 10 10 11

]
·
[
11 11 01 01

]
=

[
01 10 00 01

]
4

This corresponds to do the following

α3·β = ab′c′·cd = (a = 1)∩(b = 0)∩(c = 0)∩(d = ∗)∩(a = ∗)∩(b = ∗)∩(c = 1)∩(d = 1) =

α3·β = ((a = 1)∩(a = ∗))∩((b = 0)∩(b = ∗))∩((c = 0)∩(c = 1))∩((d = ∗)∩(d = 1))

α3 · β = (a = 1) ∩ (b = 0) ∩∅ ∩ (d = 1) = ∅

After observing that the cube α3 has void intersection with β, we can remove
the last row from the table of the cofactor Hβ In the next section we see how

a b c d
a′dβ x1ay1a x1by1b x1cy1c x1dy1d
acβ x2ay2a x2by2b x2cy2c x2dy2d

Table 6: Table of Hβ without the void intersections.

to determine the last terms.

3.2 Projection of cubes with non-void intersection

From the previous step we know that α1 = a′d and β = cd have a non-void in-
tersection. How can we compute the cofactor α1,β? The recipe in the positional
cube notation is the following

a b c d
a′dβ x1ay1a = (10) + (11)′ x1by1b = (11) + (11)′ x1cy1c = (11) + (01)′ x1dy1d = (01) + (01)′

acβ x2ay2a = (01) + (11)′ x2by2b = (11) + (11)′ x2cy2c = (01) + (01)′ x2dy2d = (11) + (01)′

Table 7: Application of the formula (Hβ)i,j = Hi,j + (βj)
′.

That gives us

a b c d
a′dβ 10 11 11 11
acβ 01 11 11 11

Table 8: Result using the positional cube notation.

But where does this formula come from? If you just want to pass the exam,
you can stop here, apply the formula, and proceed using the information at
page 297. If you are curious, you can use the following considerations to better
understand the formula (Hβ)i,j = Hi,j + (βj)

′.

3.3 Understanding the formula

First, let us notice that we can perform the cofactoring one variable at a time.

Hβ=cd = (Hc)d = (Hd)c

5

Let us consider Hc. The projections onto the space where c = 1 are the positive
cofactor with respect to c

• α1,c = a′dc = a′d

• α2,c = acc = a

In the positional cube notation this becomes

• α1,c =
[
10 11 11 01

]
?
[
11 11 01 11

]
=

[
10 11 11 01

]
• α2,c =

[
01 11 01 11

]
?
[
11 11 01 11

]
=

[
01 11 11 11

]
Next, we can project onto the d subspace

• α1,cd =
[
10 11 11 01

]
?
[
11 11 11 01

]
=

[
10 11 11 11

]
• α2,cd =

[
01 11 11 11

]
?
[
11 11 11 01

]
=

[
01 11 11 11

]
How can we find the operation to be applied to obtain the projection? Let us

formulate it as a synthesis problem. In particular, we want to find the operation
that we should perform to get the entry (Hβ)i,j = Hi,j?βj . To do so let us fill
in a table with all possible cases. We will then consider all the terms one by
one to explain how we derived them:

Hi,j βj (Hβ,i,j)
00 00 00
00 01 00
00 10 00
00 11 00
01 00 00
01 01 11
01 10 00
01 11 01
10 00 00
10 01 00
10 10 11
10 11 10
11 00 00
11 01 11
11 10 11
11 11 11


The cases with (Hβ,i,j) = ∅ are the ones that can be identified as void intersec-

6

tions, so we can focus on the remaining ones

Hi,j βj (Hβ,i,j)
01 01 11
01 11 01
10 10 11
10 11 10
11 01 11
11 10 11
11 11 11


Let us analyze them one by one:

1. Hi,j = 01 and βj = 01 could be the c column for ac when cofactoring with
respect to c. Clearly, the cofactor is a, so c becomes a don’t care in the
cofactor, and hence (Hβ,i,j) = 11.

2. Hi,j = 01 and βj = 11 could be the c column for ac when cofactoring
with respect to b. Clearly, the cofactor is ac, so c remains care value and
(Hβ,i,j) = 01.

3. Hi,j = 11 and βj = 01 could be the b column for ac when cofactoring with
respect to c. The cofactor is a, so b remains a don’t care and (Hβ,i,j) = 11.

In this way it is possible to fill in all possible cases.

Hi,j βj (Hβ,i,j)
01 01 11
01 11 01
10 10 11
10 11 10
11 01 11
11 10 11
11 11 11


Finally, to get the Boolean expression, we isolate the first and the second

bit of each column:



Hi,j βj (Hβ,i,j)
0|1 0|1 1|1
0|1 1|1 0|1
1|0 1|0 1|1
1|0 1|1 1|0
1|1 0|1 1|1
1|1 1|0 1|1
1|1 1|1 1|1


→



H1
i,j β1

j (H1
β,i,j)

0 0 1
0 1 0
1 1 1
1 1 1
1 0 1
1 1 1
1 1 1


|



H2
i,j β2

j (H2
β,i,j)

1 1 1
1 1 1
0 0 1
0 1 0
1 1 1
1 0 1
1 1 1


By isolating the unique terms, it is possible to see that

7


H1

i,j β1
j (H1

β,i,j)

0 0 1
0 1 0
1 0 1
1 1 1

 |


H2

i,j β2
j (H2

β,i,j)

0 0 1
0 1 0
1 0 1
1 1 1


Which finally yields Hk

β,i,j = Hk
i,j + (βk

j)
′

8

