CS-472: Team of Teaching Assistants

X

Andrea Costamagna

A NS e
(andrea. costamagna@epfl. ch) Mingfei Yu (mingfei .yulepfl. ch)
® PhD candidate at Integrated Systems ® PhD candidate at LSI, EPFL

Laboratory (LSI), EPFL
® Research interests:

® Research interests:

® EDA for faster secure computation;
® Logic optimization for ® Quantum compilation.

high-performance digital circuits. 1o

andrea.costamagna@epfl.ch
mingfei.yu@epfl.ch

CS-472: Exercise Sessions, Homework and Project

® Exercise Problem Sets

Pen-and-paper exercises

To prepare you for the exams

Not graded, no need to hand in

Reference solution will be released at the beginning of the following week

® Homework and Project

® Programming assignments (mostly in C++)
® Graded:; one or two weeks time

® Exercise Sessions

® When? Thursdays 11:15 - 13:00
® What?

1.

Discussion of the solutions of the previous week's exercise problems

2. Release of new exercise problem set
3.
4. Quick practical tutorials (when appropriate, e.g., today)

Free time to do homework /exercises and ask individual questions

2/19

Skills and background knowledge you will need (Moodle post)

o C++
® Basic to intermediate programming ability is assumed.
® A quick tutorial is given today + HWO for warming-up practice.
® |earn from given example code & online resources.
® Efficiency & quality of code are not emphasized, but must be functionally correct.
e VHDL
® You will need to write/modify a bit of VHDL code in HW2.
® A quick tutorial will be given.
® Graph theory
® Chapter 2 (“Background”, thus will not be taught in lectures) in the textbook.
® A brief review is given today + exercise problems.
® Command line and git
® Connecting to servers, basic linux commands, editing text files with command line (vim,
emacs etc.), compiling with make, etc.
® Project is hosted on GitHub and submission is via pull requests.
® Simple instructions will be given. Try to search and learn on your own.

3/19

C++ Tutorial for CS-472

What you need to know & self-learning tips

Mingfei Yu
Original slides by Siang-Yun (Sonia) Lee

LSI, EPFL

September 19, 2024

4/19

Basic Concepts

The programming language C++...

® _san object—oriented Ianguage. class Dog{...}; Dog charlie; charlie.bark();

® _.is a compiled language.

e s strongly typed. int x = 10; float vy = 3.14;

® _ provides possibility of low-level memory manipulation.

® __.comes with many well-implemented standard libraries. std::vector, std::sort
Why C++7

® Gain more control in what exactly is executed in the CPU.
e Customization (and hacks) to increase efficiency and to reduce memory usage.

® Many EDA tools are written in C/C++.

5/19

C++ Basics (1)

Comments and basic syntax.

1 int main ()

2

3 // single-line comment

4 /* multiple-line

5 comment */

6 int x = 10; // Remember the semicolon!
7 for (int 1 = 0; 1 < 100; i++)

8 {

9 if (x> 0)

10 { // Brackets are not mandatory for single-line body,
11 X—=;

12 } // but it’s a good habit!

13 }

14}

6/19

C++ Basics (2)

Command-line arguments and standard libraries.

1 int main(int argc, charx argv([])

2 |

3 // argc = number of command-line arguments
4 // argv = array of command-line arguments
5 // argv[0] is always executable name

6

7 std::vector<int> v;

8 // vector : size-dynamic array

9 v.push_back (std::stoi(argv[1l]));

10 // push_back : add an element at the end
11 // stoi : convert from string to int

12 std::cout << "first element is " << v.at (0) << std::endl;
13 // cout : print

14 // endl : end line

15}

IR NN BT RIS Ele- o++ main.cpp —o example; ./example 3

7/19

C++ Basics (3-1)

Address, pointers and references.

-

© 0 N o U A W N

int main ()

{

int x = 2; ptrx

intx ptr_x = &x;

// intx : a pointer to an int

// &x : take the address of x

int y = *ptr_x;

// *ptr_x : "dereference" the pointer (get back x from its address)
ints z = xptr_x;

// int& : a reference (alias) of an int

// i.e., z is the same thing as #*ptr_x, which is the same thing as x
*ptr_x += 1;

std::cout << "x = " <K<K x << ", y =" <Ky <K<", z =" <K z << std::endl;
// x =3, yv=2, z=3

8/19

C++ Basics (3-2)

The C++ way: Iterators
® Roughly the same as pointers conceptually.
e Compiler recognizes it as an object, but not an address (numeric value) — type safety.

© N O U A W N e

® |terates through a range.

int main () v.begin () v.end ()
{ °

IEEpBE

3

std::vector<int> v = { -2, -1, 0, 1, 2 };

std::vector<int>::iterator it = v.begin(); irerator iterator
while (it != v.end())
{

*it = —(*1it); // use * to get or operate on the real content

++it; // move forward

9/19

C++ Basics (4-1)

Classes and objects.

N o g oA~ W N

[

class Student {
public: // public member functions are available from outside
Student (std::string name, int grade) // constructor
_name (name), _grade(grade) // initialize data members
{ std::cout << "A student is created!\n"; }

“Student () { std::cout << "A student is deleted!\n"; } // destructor

std::string get_name () const
{ return _name; }

void set_grade(int new_grade)
{ _grade = new_grade; }

private: // data members are usually private
std::string _name;
int _grade;

}; // Remember the semicolon! 10/19

C++ Basics (4-2)

Classes and objects.

g A W N

© © ~N o

int main ()

{

Student sl ("John", 90); // instantiate an object
sl.set_grade(95);
// call a member function with an object using a dot

Student* ptr_s2 = new Student ("Mary", 80); // another way of instantiation
std::cout << "student’s name is " << ptr_s2->get_name () << std::endl;

// when calling with a pointer, use ->

delete ptr_s2;
// if you instantiate with "new", then you need to explicitly "delete" it

11/19

C++ Basics (5-1)

Scope of variables.

1 wvoid funcl(int x) // x is pass by copy

2

3 X += 1; // does not affect the x in main

4 int z; // funcl-wide variable

5}

6

7 int main ()

8 |

9 int x = 1; // main()-wide variable

10 { // every pair of {} creates a local scope

11 // (looping, conditioning, function, or simply brackets like this)
12 int y; // {}-wide variable

13 } // yv 1s deleted at this point (call destructor)
14

15 funcl(x);

16}

12/19

C++ Basics (5-2)

Scope of variables.

1 void func2(ints& x) // x is pe

2

3 X += 1; // affec
4

5}

6

7 int main ()

8 {

9 int x = 1;

10 {

11 int v = 2;

12 func2(x);

13 func2(vy); //
14 }

15 std::cout << "x
16 // x in main is
17}

by reference

ts the x in main

// x +=vy; // this will not work

but this works

in main is " << x << std::endl;
5

13/19

C++ Basics (5-3)

Scope of variables.
® |f you write a stand-alone function, you need to pass all needed variables as its arguments.
® |f you write a member function of a class, all data members are accessible — useful when
you have lots of “global variables”.
® These are all local variables. Real global variables (defined outside of any function or
class) are usually not recommended.

14/19

More Advanced C++ Features

® template: Provides flexibility in function and class implementations.

1 template<class T>

2> T add_three(T a, T b, T ¢)

3 { return a + b + c; }

4

5 int main ()

6 {

7 add_three<int>(1, 2, 3);

8 // substitute "T" with "int" in function definition
9}

® namespace: To avoid collision in function or class names.

1 namespace dtis { template<class T> class vector{ /» ... =/ }; }

2 int main ()

3

4 using namespace std; // std will be the default namespace

5 vector<int> vl; // std::vector (standard library)

6 dtis::vector<int> v2; // our own implementation

T 15/19

Understanding a Piece of C++ Code

Basic steps
1. Understand the data structure.
2. Locate the entry point of the program (int main ()) and of the main algorithm
(typically a function call).
3. Focus on the big picture before diving into details and corner cases/terminating
conditions.
Pro-tips
® Print out stuff to quickly know which parts of the code are executed and in which order.
® Try to “execute by hand” the core part line by line with a toy example. If you don't know
what an expression evaluates to, print it out!

® |f you see...
® _.an object of a custom class: Find the class definition. Pay attention to what data

members it has.
¢ ..a standard library object: Search for online documentation (cppreference.com).

16/19

cppreference.com

Writing C++ Code

® | earn from some example code.

® Leverage the standard libraries (e.g., std: :vector, std: :set, std: :map,
std::pair, std::sort ...).

® Plan your data structure.

® Break down the task into simple steps. Write one step, compile it, and do simple tests if
possible.

® Write assertions (e.g. assert (x > 0) ;) whenever there are explicit or implicit
assumptions, or when you expect the computation result to have some properties.

® The basic stuff: Use a good editor. Properly indent the code (though not mandatory).
Give variables, classes and functions reasonable names. Write comments for yourself.

17/19

Debugging C++ Code

e Compilation errors
® Ask Google/ChatGPT about the error message.
® Be aware of the const qualifiers.

® Segmentation faults

® Means: illegal memory access.

® Usually: double free, index out of bounds.

® Add print-outs to locate the point where it segfaults (remember to add cout.flush () ;).
® Use a debugger (gdb, 11db, etc.).

® Assertion fails and incorrect results

® Print variable values (using a debugger may be convenient).

® Execute the example by hand and compare with the actual computation results.
® Add more assertions (maybe it has been wrong way earlier).

® Explain your code to a rubber duck ;-)

18/19

Writing Good C++ Code

(Not a requirement for the course)
® Avoid unnecessary copying. (pass by copy vs. pass by reference)

® Understand the underlying data structure and the complexities of its operations. (e.g.
std::vector vs. std: :map)

® Distinguish what are decided (evaluated/instantiated/substituted) at compile-time and
what are known only at run-time.

¢ Distinguish public and private data members and member functions. (Does it need to be
public?)

® Add the const qualifier whenever appropriate.

® Avoid duplicated code whenever possible.

19/19

