
CS-472: Team of Teaching Assistants

Andrea Costamagna
(andrea.costamagna@epfl.ch)

• PhD candidate at Integrated Systems
Laboratory (LSI), EPFL

• Research interests:
• Logic optimization for

high-performance digital circuits.

Mingfei Yu (mingfei.yu@epfl.ch)

• PhD candidate at LSI, EPFL
• Research interests:

• EDA for faster secure computation;
• Quantum compilation.

1 / 19

andrea.costamagna@epfl.ch
mingfei.yu@epfl.ch

CS-472: Exercise Sessions, Homework and Project

• Exercise Problem Sets
• Pen-and-paper exercises
• To prepare you for the exams
• Not graded, no need to hand in
• Reference solution will be released at the beginning of the following week

• Homework and Project
• Programming assignments (mostly in C++)
• Graded; one or two weeks time

• Exercise Sessions
• When? Thursdays 11:15 - 13:00
• What?

1. Discussion of the solutions of the previous week’s exercise problems
2. Release of new exercise problem set
3. Free time to do homework/exercises and ask individual questions
4. Quick practical tutorials (when appropriate, e.g., today)

2 / 19

Skills and background knowledge you will need (Moodle post)

• C++
• Basic to intermediate programming ability is assumed.
• A quick tutorial is given today + HW0 for warming-up practice.
• Learn from given example code & online resources.
• Efficiency & quality of code are not emphasized, but must be functionally correct.

• VHDL
• You will need to write/modify a bit of VHDL code in HW2.
• A quick tutorial will be given.

• Graph theory
• Chapter 2 (“Background”, thus will not be taught in lectures) in the textbook.
• A brief review is given today + exercise problems.

• Command line and git
• Connecting to servers, basic linux commands, editing text files with command line (vim,

emacs etc.), compiling with make, etc.
• Project is hosted on GitHub and submission is via pull requests.
• Simple instructions will be given. Try to search and learn on your own.

3 / 19

C++ Tutorial for CS-472
What you need to know & self-learning tips

Mingfei Yu

Original slides by Siang-Yun (Sonia) Lee

LSI, EPFL

September 19, 2024

4 / 19

Basic Concepts

The programming language C++...

• ...is an object-oriented language. class Dog{...}; Dog charlie; charlie.bark();

• ...is a compiled language.

• ...is strongly typed. int x = 10; float y = 3.14;

• ...provides possibility of low-level memory manipulation.

• ...comes with many well-implemented standard libraries. std::vector, std::sort

Why C++?

• Gain more control in what exactly is executed in the CPU.

• Customization (and hacks) to increase efficiency and to reduce memory usage.

• Many EDA tools are written in C/C++.

5 / 19

C++ Basics (1)

Comments and basic syntax.

1 int main()
2 {
3 // single-line comment
4 /* multiple-line
5 comment */
6 int x = 10; // Remember the semicolon!
7 for (int i = 0; i < 100; i++)
8 {
9 if (x > 0)

10 { // Brackets are not mandatory for single-line body,
11 x--;
12 } // but it’s a good habit!
13 }
14 }

6 / 19

C++ Basics (2)

Command-line arguments and standard libraries.

1 int main(int argc, char* argv[])
2 {
3 // argc = number of command-line arguments
4 // argv = array of command-line arguments
5 // argv[0] is always the executable name
6

7 std::vector<int> v;
8 // vector : size-dynamic array
9 v.push_back(std::stoi(argv[1]));

10 // push_back : add an element at the end
11 // stoi : convert from string to int
12 std::cout << "first element is " << v.at(0) << std::endl;
13 // cout : print
14 // endl : end line
15 }

In a command-line interface: g++ main.cpp -o example; ./example 3

7 / 19

C++ Basics (3-1)

Address, pointers and references.

1 int main()
2 {
3 int x = 2;
4 int* ptr_x = &x;
5 // int* : a pointer to an int
6 // &x : take the address of x
7 int y = *ptr_x;
8 // *ptr_x : "dereference" the pointer (get back x from its address)
9 int& z = *ptr_x;

10 // int& : a reference (alias) of an int
11 // i.e., z is the same thing as *ptr_x, which is the same thing as x
12 *ptr_x += 1;
13 std::cout << "x = " << x << ", y = " << y << ", z = " << z << std::endl;
14 // x = 3, y = 2, z = 3
15 }

x,z

2

ptr x

y

2

8 / 19

C++ Basics (3-2)

The C++ way: Iterators
• Roughly the same as pointers conceptually.
• Compiler recognizes it as an object, but not an address (numeric value) → type safety.
• Iterates through a range.

1 int main()
2 {
3 std::vector<int> v = { -2, -1, 0, 1, 2 };
4 std::vector<int>::iterator it = v.begin();
5 while (it != v.end())
6 {
7 *it = -(*it); // use * to get or operate on the real content
8 ++it; // move forward
9 }

10 }

-2 -1 0 1 2
int

iterator iterator

v

v.begin() v.end()

9 / 19

C++ Basics (4-1)

Classes and objects.

1 class Student {
2 public: // public member functions are available from outside
3 Student(std::string name, int grade) // constructor
4 : _name(name), _grade(grade) // initialize data members
5 { std::cout << "A student is created!\n"; }
6

7 ˜Student() { std::cout << "A student is deleted!\n"; } // destructor
8

9 std::string get_name() const
10 { return _name; }
11

12 void set_grade(int new_grade)
13 { _grade = new_grade; }
14

15 private: // data members are usually private
16 std::string _name;
17 int _grade;
18 }; // Remember the semicolon!

10 / 19

C++ Basics (4-2)

Classes and objects.

1 int main()
2 {
3 Student s1("John", 90); // instantiate an object
4 s1.set_grade(95);
5 // call a member function with an object using a dot
6

7 Student* ptr_s2 = new Student("Mary", 80); // another way of instantiation
8 std::cout << "student’s name is " << ptr_s2->get_name() << std::endl;
9 // when calling with a pointer, use ->

10

11 delete ptr_s2;
12 // if you instantiate with "new", then you need to explicitly "delete" it
13 }

11 / 19

C++ Basics (5-1)

Scope of variables.

1 void func1(int x) // x is pass by copy
2 {
3 x += 1; // does not affect the x in main
4 int z; // func1-wide variable
5 }
6

7 int main()
8 {
9 int x = 1; // main()-wide variable

10 { // every pair of {} creates a local scope
11 // (looping, conditioning, function, or simply brackets like this)
12 int y; // {}-wide variable
13 } // y is deleted at this point (call destructor)
14

15 func1(x);
16 }

12 / 19

C++ Basics (5-2)

Scope of variables.

1 void func2(int& x) // x is pass by reference
2 {
3 x += 1; // affects the x in main
4 // x += y; // this will not work
5 }
6

7 int main()
8 {
9 int x = 1;

10 {
11 int y = 2;
12 func2(x);
13 func2(y); // but this works
14 }
15 std::cout << "x in main is " << x << std::endl;
16 // x in main is 2
17 }

13 / 19

C++ Basics (5-3)

Scope of variables.

• If you write a stand-alone function, you need to pass all needed variables as its arguments.

• If you write a member function of a class, all data members are accessible – useful when
you have lots of “global variables”.

• These are all local variables. Real global variables (defined outside of any function or
class) are usually not recommended.

14 / 19

More Advanced C++ Features

• template: Provides flexibility in function and class implementations.

1 template<class T>
2 T add_three(T a, T b, T c)
3 { return a + b + c; }
4

5 int main()
6 {
7 add_three<int>(1, 2, 3);
8 // substitute "T" with "int" in function definition
9 }

• namespace: To avoid collision in function or class names.

1 namespace dtis { template<class T> class vector{ /* ... */ }; }
2 int main()
3 {
4 using namespace std; // std will be the default namespace
5 vector<int> v1; // std::vector (standard library)
6 dtis::vector<int> v2; // our own implementation
7 } 15 / 19

Understanding a Piece of C++ Code

Basic steps

1. Understand the data structure.

2. Locate the entry point of the program (int main()) and of the main algorithm
(typically a function call).

3. Focus on the big picture before diving into details and corner cases/terminating
conditions.

Pro-tips

• Print out stuff to quickly know which parts of the code are executed and in which order.

• Try to “execute by hand” the core part line by line with a toy example. If you don’t know
what an expression evaluates to, print it out!

• If you see...
• ...an object of a custom class: Find the class definition. Pay attention to what data

members it has.
• ...a standard library object: Search for online documentation (cppreference.com).

16 / 19

cppreference.com

Writing C++ Code

• Learn from some example code.

• Leverage the standard libraries (e.g., std::vector, std::set, std::map,
std::pair, std::sort ...).

• Plan your data structure.

• Break down the task into simple steps. Write one step, compile it, and do simple tests if
possible.

• Write assertions (e.g. assert(x > 0);) whenever there are explicit or implicit
assumptions, or when you expect the computation result to have some properties.

• The basic stuff: Use a good editor. Properly indent the code (though not mandatory).
Give variables, classes and functions reasonable names. Write comments for yourself.

17 / 19

Debugging C++ Code

• Compilation errors
• Ask Google/ChatGPT about the error message.
• Be aware of the const qualifiers.

• Segmentation faults
• Means: illegal memory access.
• Usually: double free, index out of bounds.
• Add print-outs to locate the point where it segfaults (remember to add cout.flush();).
• Use a debugger (gdb, lldb, etc.).

• Assertion fails and incorrect results
• Print variable values (using a debugger may be convenient).
• Execute the example by hand and compare with the actual computation results.
• Add more assertions (maybe it has been wrong way earlier).
• Explain your code to a rubber duck ;-)

18 / 19

Writing Good C++ Code

(Not a requirement for the course)

• Avoid unnecessary copying. (pass by copy vs. pass by reference)

• Understand the underlying data structure and the complexities of its operations. (e.g.
std::vector vs. std::map)

• Distinguish what are decided (evaluated/instantiated/substituted) at compile-time and
what are known only at run-time.

• Distinguish public and private data members and member functions. (Does it need to be
public?)

• Add the const qualifier whenever appropriate.

• Avoid duplicated code whenever possible.

19 / 19

