Sequential Logic Synthesis

Giovanni De Micheli
Integrated Systems Laboratory

LS

ttttttttt d Systems Laboratory

nm
o
"1
—

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module 1

¢ Objective

A Motivation and assumptions for sequential synthesis

AFinite-state machine design and optimization

(c) Giovanni De Micheli

Synchronous logic circuits

¢ Interconnection of

A Combinational logic gates

A Synchronous delay elements
v Edge-triggered, master/slave

¢ Assumptions

A No direct combinational feedback
A Single-phase clocking

¢ Extensions to

A Multiple-phase clocking
A Gated latches

(c) Giovanni De Micheli

Modeling synchronous circuits

¢ Circuit are modeled in hardware languages

A Circuit model may be directly related to FSM model
v Description by: switch-case

A Circuit model may be structural

v Explicit definition of registers

+ Sequential circuit models can be generated from high-level
models

A Control generation in high-level synthesis

(c) Giovanni De Micheli 4

Modeling synchronous circuits

¢ State-based model:

A Model circuits as finite-state machines (FSMs)
A Represent by state tables/diagrams

A Apply exact/heuristic algorithms for:

v State minimization
v State encoding

¢ Structural model
A Represent circuit by synchronous logic network
AApply

v Retiming
v Logic transformations

(c) Giovanni De Micheli

State-based optimization

(c) Giovanni De Micheli

N

l" B | a - ‘.'
\ {(<l/\ _/
N /

State Minimization

Modeling synchronous circuits

¢ Advantages and disadvantages of models
¢ State-based model

A Explicit notion of state

Almplicit notion of area and delay

¢ Structural model
Almplicit notion of state

A EXxplicit notion of area and delay

¢ Transition from a model to another is possible
A State encoding
A State extraction

(c) Giovanni De Micheli

Sequential logic optimization

¢ Typical flow

AOptimize FSM state model first

v Reduce complexity of the model
VvE.g., apply state minimization
v Correlates to area reduction

AEncode states and obtain a structural model

v Apply retiming and transformations
v Achieve performance enhancement

AUse state extraction for verification purposes

(c) Giovanni De Micheli

Formal finite-state machine model

¢ A set of primary input patterns X

¢ A set of primary output patterns Y

¢ A set of states S

A state transition function: : X X S — S

¢ An output function:
A A: X X §— Y for Mealy models

A AN: S — Y for Moore models

(c) Giovanni De Micheli

State minimization

¢ Classic problem
A Exact and heuristic algorithms are available
A Objective is to reduce the number of states and hence the area

¢ Completely-specified finite-state machines
ANo don ’t care conditions
A Polynomial-time solutions

¢ Incompletely-specified finite-state machines

A Unspecified transitions and/or outputs
v Usual case in synthesis

Alntractable problem:
v Requires binate covering

(c) Giovanni De Micheli

10

State minimization

for completely-specified FSMs
¢ Equivalent states:

A Given any input sequence, the corresponding output sequence match

¢ Theorem:

A Two states are equivalent if and only if:
v They lead to identical outputs and their next-states are equivalent

¢ Equivalence is transitive
A Partition states into equivalence classes

A Minimum finite-state machine is unique

(c) Giovanni De Micheli 1"

State minimization

for completely-specified FSMs

¢ Stepwise partition refinement:
A Initially:
v All states in the same partition block
A lteratively:
v Refine partition blocks

A At convergence:
v Partition blocks identify equivalent states

¢ Refinement can be done in two directions

A Transitions from states in block to other states
v Classic method. Quadratic complexity

A Transitions into states of block under consideration
v Inverted tables. Hopcroft’ s algorithm.

(c) Giovanni De Micheli 12

Example of refinement

¢ Initial partition:

All; : States belong to the same block when outputs are
the same for any input

¢ lteration:

All . : States belong to the same block if they were
previously in the same block and their next states are in
the same block of I'l, for any input

¢Convergence:
Al =11,

(c) Giovanni De Micheli 13

Example

INPUT | STATE | N-STATE | OUTPUT
0 S1 $3 1
1 $1 S5 1
0 $2 $3 1
1 $2 S5 1
0 53 59 0
1 53 51 1
0 Sa sS4 0
1 S4 S5 1
0 S5 S4 1
1 S5 $1 O

(c) Giovanni De Micheli

14

(c) Giovanni De Micheli

Example

15

Example

0”1 ={{S1! SZ}’ {33534}!{35}}
0n2={{81,82}, {33}!{54}!{35}}

o[l1, is a partition into equivalence classes

ANo further refinement is possible

AStates { s, s,} are equivalent o1

(c) Giovanni De Micheli

11

0/0

_ State minimization _
for incompletely-specified finite-state machines

¢ Applicable input sequences

AAll transitions are specified

¢ Compatible states

A Given any applicable input sequence, the corresponding output
sequence match

¢ Theorem:

A Two states are compatible if and only if:

v They lead to identical outputs
+ (when both are specified)

v And their next state is compatible
+ (when both are specified)

(c) Giovanni De Micheli

17

State minimization
for incompletely-specified finite-state machines

¢ Compatibility is not an equivalence relation
¢ Minimum finite-state machine is not unique

¢ Implication relation make the problem intractable

A Two states may be compatible, subject to other states being
compatible.

Almplications are binate satisfiability clauses

v a->b =a+b

(c) Giovanni De Micheli

18

Example

INPUT [STATE | N-STATE | OUTPUT
0 81 83 1
1 31 S5 *
0 89 83 *
1 89 S5 1
0 83 89 0
1 83 81 1
0 Sa sS4 0
1 Sa S5 1
0 S5 sS4 1
1 85 81 0

(c) Giovanni De Micheli

19

Trivial method

Consider all possible don 't care assignments

An don’t care imply

v 2" completely specified FSMs
v 2" solutions

¢ Example:
AReplace * by 1

vl ={{sy,s2},{ss}, {sa}, {S5}}
AReplace * by 0

vl ={{sy,Ss},{5253,54}}

(c) Giovanni De Micheli

20

Compatibility and implications
Example

+Compatible states {s, , s,} INPUT .iTATE l.STATE OUTPUT
olf {s;, s,} are compatible 5 . s :
A Then {s,, s; } are also compatible (1) :§ :2 é
¢Incompatible states {s, , ss} C} E é é
0 s s4 1
1 s5 31 0

(c) Giovanni De Micheli 21

Compatibility and implications

¢Compatible pairs:

A {s,, S}
A {31! 35} — {33! 34}

INPUT |STATE | N-STATE [OUTPUT

A {S;, Sg} < {83, 54} 0 51 5 1

A {8y, S3} < {84, S5} ! °1 *5)

0 89 83 *

A {S3, S4} < {s2, 84} U {s4, S5} 1 $ s5 1

)) 0 : s

#Incompatible pairs " :2 :f (1)

A {SZ! 35} O S4 54 0

1 34 85 1

A {S;, S5} 0 ss sS4 1

A {31, 34} 1 .‘45 .‘s’l O
A {sy, S5}
A {sy, S3}

(c) Giovanni De Micheli 22

Compatibility and implications

¢ A class of compatible states is such that all state pairs are
compatible

¢ A class is maximal

Alf not subset of another class

¢ Closure property

AA set of classes such that all compatibility implications are
satisfied

The set of maximal compatibility classes

A Has the closure property
A May not provide a minimum solution

(c) Giovanni De Micheli 23

Maximum compatibility classes

¢ Example:
A{s,, Sy}
A{S,, S5} — {s3, S4}
A{Sy, S3, S4} — {s4, S5}

¢ Cover with all MCC has cardinality 3

(c) Giovanni De Micheli

24

Exact problem formulation

¢ Prime compatibility classes:

A Compatibility classes having the property that they are not subset of other
classes implying the same (or subset) of classes

¢ Compute all prime compatibility classes

¢ Select a minimum number of prime classes

A Such that all states are covered

A All implications are satisfied

¢ Exact solution requires binate cover

¢ Good approximation methods exists

A Stamina

(c) Giovanni De Micheli

25

Prime compatibility classes

¢ Example:
A{s,)}
A{sy, S5} < {s3, Sy}
A{S, S3, S4} — {s4, S5}
¢ Minimum cover:

A{S, S5} , {S2, S3, S4}

AMinimun cover has cardinality 2

(c) Giovanni De Micheli

26

State encoding

¢ Determine a binary encoding of the states

A Optimizing some property of the representation (mainly area)

¢ Two-level model for combinational logic

A Methods based on symbolic optimization

v Minimize a symbolic cover of the finite state machine
v Formulate and solve a constrained encoding problem

¢ Multiple-level model

A Some heuristic methods that look for encoding which privilege
cube and/or kernel extraction

AWeak correlation with area minimality

(c) Giovanni De Micheli 27

(c) Giovanni De Micheli

Example

INPUT | P-STATE N-STATE OUTPUT
0 s1 s3 0
1 s1 s3 0
0 s2 s3 0
1 s2 s1 1
0 s3 s 0
1 s3 s4 1
0 s4 s2 1
1 s4 s3 0
0 s5 s2 1
1 s s 0

28

* Minimum symbolic cover:

Example

* Encoded cover:

* s1s2s4 s3 0
1 s2 s1 1
0 s4sd s2 1
1 s3 s4 1
* 1% 001 0
1 101 11 1
0 *00 101 1
1 001 100 1

(c) Giovanni De Micheli

29

Summary
finite-state machine optimization

¢ FSM optimization has been widely researched

A Classic and newer approaches

+ State minimization and encoding correlate to area
reduction

A Useful, but with limited impact

¢ Performance-oriented FSM optimization has mixed results

A Performance optimization is usually done by structural methods

(c) Giovanni De Micheli 30

Module 2

¢ Objective

A Structural representation of sequential circuits
ARetiming

A Extensions

(c) Giovanni De Micheli

31

Structural model for sequential circuits

Synchronous logic network

AVariables
A Boolean equations

A Synchronous delay annotation

¢ Synchronous network graph

AVertices & equations < 1/O, gates
AEdges < dependencies < nets

AWeights < synchronous delays < registers

(c) Giovanni De Micheli

32

Example

W\ .2

7/ /7 ¢! I
YO b

N\ P

—/)

(c) Giovanni De Micheli

33

Example

on) = ;(n)) ;(n—1)
p(n) = ;(n=1) F ;(n=2)
) — ,(n)p(n)

4 =) 4 g1

6(7'1) — d(‘n)e(n—l)+dl('n)b/(n)
U(n) - C(n)
— e('n,—l)

v
)
~
o~
p—

(c) Giovanni De Micheli

2

-

QU O

i @ 1@1

i@l ¢ @2
a b

¢+ do1’
de@l+d Vv

— C

e@1

34

Approaches to sequential synthesis

Optimize combinational logic only

AFreeze circuit at register boundary

A Modify equation and network graph topology
¢ Retiming

A Move register positions. Change weights on graph

APreserve network topology

¢ Synchronous transformations

ABlend combinational transformations and retiming

A Powerful, but complex to use

(c) Giovanni De Micheli

35

Example of local retiming

a c a ___
b ' j)x
d c
X
d

(a) (c)

1
1
ﬁ} K)— >O K)—
1
(b) (d)

L

(c) Giovanni De Micheli 36

Retiming

¢ Global optimization technique

¢ Change register positions

AAffects area:

v Retiming changes register count

AAffects cycle-time:
v Changes path delays between register pairs

¢ Retiming algorithms have polynomial-time
complexity

(c) Giovanni De Micheli

37

Retiming assumptions

¢ Delay is constant at each vertex
A No fanout delay dependency

Graph topology is invariant
ANo logic transformations

¢ Synchronous implementation

ACycles have positive weights
v Each feedback loop has to be broken by at least one register

A Edges have non-negative weights
v Physical registers cannot anticipate time

Consider topological paths
A No false path analysis

(c) Giovanni De Micheli

38

Retiming

Retiming of a vertex v

Alntegerr,
ARegisters moved from output to input: r, positive
ARegisters moved from input to output: r, negative

Retiming of a network

AVector whose entries are the retiming at various vertices

¢ A family of I/O equivalent networks are specified by:

A The original network

A A set of vectors satisfying specific constraints
v Legal retiming

(c) Giovanni De Micheli 39

Original graph

Retimed graph

(c) Giovanni De Micheli

40

Definitions and properties

¢ Definitions:
AW(v;,v;) weighton edge (v; v;)
A(Vj, ..., v;) pathfromyv;toy;
AW(V; ..., v;) weight on path from v; to v,

Ad(v;, ..., v;) combinational delay on path from v; to v,

¢ Properties:

ARetiming of an edge (v;, v;) @ L
\ 4 Wij=Wij+rj—ri

ARetiming of a path (v;, ..., v;)
\ A" (Viy ouny VJ) - W(Vi, ey VJ) + rj -T;

A Cycle weights are invariant

(c) Giovanni De Micheli

®

41

Legal retiming

¢ A retiming vector is legal iff:

ANo edge weight is negative
v W (Vi Vi) = wj (v, vj) +1-1; 20 forall i, |
A Given a clock period ¢p:
A Each path (v;, ..., v withd (v;, ..., v)) >
has at least one register:
YW (Voo Vi) SW (Vo V) #1121 foralli, j

A Equivalently, each combinational path delay is less than ¢

(c) Giovanni De Micheli

42

Refined analysis

¢ Least-register path

AW (v, v;)) =min w (v, ..., v;) over all paths between v; and v;

¢ Critical delay:

AD (v;, vj) =maxd (v;, ..., v;) over all paths between v; and v;
with weight W (v;, v;)

¢ There exist a vertex pair (v;, v;) whose delay D (v;, v)
bounds the cycle time

(c) Giovanni De Micheli 43

Vertices: v., v,

Paths: (v, vy, V¢, Vo) and (v., vy, Ve, Vg, Ve)

‘W(v,, v,) =2

(c) Giovanni De Micheli 44

Minimum cycle-time retiming problem

¢ Find the minimum value of the clock period ¢
such that there exist a retiming vector where:

Ar-r sw; forall (v, v)
v AII reglsters are implementable

Ar—-1r; SW(v,v)-1 forall(v;,v;)suchthatD (v, v) > ¢
v All timing path constraints are satisfied

¢ Solution

A Given a value of ¢

A Solve linear constraints Ar<b
v Mixed integer-linear program

A A set of inequalities has a solution if the constraint graph has no positive cycles
v Bellman-Ford algorithm — compute longest path

A lterative algorithm
v Relaxation

(c) Giovanni De Micheli 45

Minimum cycle-time retiming algorithm

¢ Compute all pair path weights W (v;, v;) and delays D (v;, v;)

A Warshall-Floyd algorithm with complexity O(|V|®)

¢ Sort the elements of D (v;, v;) in decreasing order

A Because an element of D is the minimum ¢

Binary search for a ¢p in D (v;, v;) such that

A There exists a legal retiming

A Bellman-Ford algorithm with complexity O([V|?)

& Remarks

A Result is a global optimum

A Overall complexity is O(|V]® log [V])

(c) Giovanni De Micheli

46

Example: original graph

Constraints (first type):
°r,-r,<1orequivalentlyr, 2r, -1
*r.-r, <1 orequivalently r,2r, -1

(c) Giovanni De Micheli 47

Example: constraint graph

Constraints (first type):
-1
°r,-r,<1orequivalentlyr, 2r, -1 @ @

*r.-r, <1 orequivalently r,2r, -1

(c) Giovanni De Micheli 48

Example

& Sort elements of D:
A 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
¢ Select ¢ =19
A 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
A Pass: legal retiming found
¢ Select ¢ =13
A 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
A Pass: legal retiming found
¢ Select ¢p <13
A 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
A Fail: no legal retiming found

¢ Fastest cycle time is ¢p = 13. Corresponding retiming vector is used

(c) Giovanni De Micheli 49

Example ¢ =13

ra—7re < 2—1 Or equivalently re > rq—1
re—ry < 0—1 or equivalently ry > re+1

rF—"rg < 0-—1 or equivalently rg > rf—i—l

rg—rp < 2—1o0r equivalently ry > rg—1

rg—re < 3—1 or equivalently re > rg—2

(c) Giovanni De Micheli 50

Example ¢p =13

¢Constraint graph:

¢Longest path from source
A -[12232100]

¢Retimed graph

(c) Giovanni De Micheli 51

¢ The solution is not unique

(c) Giovanni De Micheli

Example ¢p =13

52

Relaxation-based retiming

¢ Most common algorithm for retiming

AAvoids storage of matrices W and D

A Applicable to large circuits

¢ Rationale

A Search for decreasing « in fixed step
v Look for values of ¢p compatible with peripheral circuits

A Use efficient method to determine legality
v Network graph is often very sparse

A Can be coupled with topological timing analysis

(c) Giovanni De Micheli

53

Relaxation-based retiming

+ Start with a given cycle-time ¢
¢ Look for paths with excessive delays

¢ Make such paths shorter

A By bringing the terminal register closer
A Some other paths may become longer

A Namely, those path whose tail has been moved

¢ Use an iterative approach

(c) Giovanni De Micheli

54

Relaxation-based retiming

¢ Define data ready time at each node

ATotal delay from register boundary

¢ lterative approach

AFind vertices with dafa ready >
A Retime these vertices by 1

¢ Algorithm properties

Alf at some iteration there is no vertex with dafa ready > ,
a legal retiming has been found

Alf alegal retiming is not found in |V| iterations,
then no legal retiming exists for that ¢

(c) Giovanni De Micheli

55

Example « =13 iteration =1

(c) Giovanni De Micheli 56

Example « =13 iteration =2

(c) Giovanni De Micheli

57

(c) Giovanni De Micheli

Example ¢ =13 iteration =3

58

Retiming for minimum area

¢ Find a retiming vector that minimizes the number of
registers

+ Simple area modeling

AEvery edge with a positive weight denotes registers

A Total register area is proportional to the sum of all weights
¢ Register sharing model

AEvery set of positively-weighted edges with common tail is
realized by a shift register with taps

ATotal register area is proportional to the sum, over all vertices,
of the maxima of weights on outgoing edges

(c) Giovanni De Micheli 59

Jo_l
A

10

b

10

(c) Giovanni De Micheli

Minimum area retiming

simple model
Register variation at node v
A 1, (indegree(v) — outdegree(v))
¢ Total area variation:
A2 r, (indegree(v) — outdegree(v))
¢ Area minimization problem:

AMin 2 r, (indegree(v) — outdegree(v))

ASuch thatr,-r, =wj; forall (v, v;)

(c) Giovanni De Micheli 61

Minimum area retiming

under timing constraint

¢ Area recovery under timing constraint

AMin 2 r, (indegree(v) — outdegree(v)) such that:
Ar—r; =wj forall (v, v;)and

Ari—1; SW(v;v;) =1 forall (v, v;)suchthatD (v, v) > ¢

ir Vj iv Vj

¢ Common implementation is by integer linear program
AProblem can alternatively be transformed into a matching problem
and solved by Edmonds-Karp algorithm
¢ Register sharing

A Construct auxiliary network and apply this formulation.

A Auxiliary network construction takes into account register sharing
(c) Giovanni De Micheli 62

Other problems related to retiming

¢ Retiming pipelined circuits
A Balance pipe stages by using retiming
A Trade-off latency versus cycle time
¢ Peripheral retiming
A Use retiming to move registers to periphery of a circuit
ARestore registers after optimizing combinational logic
¢ Wire pipelining
A Use retiming to pipeline interconnection wires

A Model sequential and combinational macros
A Consider wire delay and buffering

(c) Giovanni De Micheli

63

Summary of retiming

Sequential optimization technique for:

ACycle time or register area

¢ Applicable to

A Synchronous logic networks

A Architectural models of data paths
v Vertices represent complex (arithmetic) operators

A Exact algorithm in polynomial time

¢ Extension and issues

A Delay modeling
A Network granularity

(c) Giovanni De Micheli

64

Module 3

¢ Objective

A Relating state-based and structural models

A State extraction

(c) Giovanni De Micheli

65

Relating the sequential models

+ State encoding

A Maps a state-based representation into a structural one

¢ State extraction

A Recovers the state information from a structural model

¢ Remark

AA circuit with n registers may have 2" states

AUnreachable states

(c) Giovanni De Micheli

66

State extraction

¢ State variables: p, q X
#Initial state p=0; q=0; \; j:D_

oFour possible states

(c) Giovanni De Micheli 67

State extraction

¢ Reachability analysis

A Given a state, determine which states are reachable for some
inputs

A Given a state subset, determine the reachable state subset
A Start from an initial state

A Stop when convergence is reached

¢ Notation:

A A state (or a state subset) is represented by an expression over
the state variables

Almplicit representation

(c) Giovanni De Micheli 68

Reachability analysis

+ State transition function: f
¢ Initial state: r,
¢ States reachable fromr,

Almage of ry under f

¢ States reachable from set r,

Almage of r, under f
¢ lteration

Ar =r.U (image of r, under f)
+ Convergence

ATl =1 for some k

(c) Giovanni De Micheli

69

m

(a) (b)

e Initial state rg = p'q’.

e [he state transition function f = / /
xp + pq

2'p'q + pq]

(c) Giovanni De Micheli 70

Example

eImage of p’ g’ under f:

AWhen(p=0 andq=0),freducesto[x’ x]'
Almageis[01]7U [10]"

o States reachable from the reset state: j%}D— z
A(p=1;q=0)and (p=0;q=1) |~
Ar=p'q +pq +p q=p +q IS re

o States reacheable fromr;: D

A[OOTTU[O1TTU [10]

+Convergence: Co——(1)
AS)=p Q' ;s81=pq ;s =p q; ’

(c) Giovanni De Micheli 11 4

Completing the extraction

#®Determine state set

A Vertex set

¢®Determine transitions and I/O labels
A Edge set

A Inverse image computation

A Look at conditions that lead into a given state

(c) Giovanni De Micheli

72

Example

eTransitionintos,=p’ q’

APatterns that make f=[00] are:

(x'p'q +pg) (xp’ +pq’) =xp'q

ATransition from state s, = p’ q under

input x’
OO
AAndsoon... I
0
©

(c) Giovanni De Micheli

1M
73

Remarks

¢ Extraction is performed efficiently with implicit methods

¢ Model transition relation X (i,x,y) with BDDs

A This function relates possible triples:
v (input, current_state, next_state)

Almage of r,:

¥ Six (X(i,%,y) 1 (x))
v Where r, depends on inputs x

A Smoothing on BDDs can be achieved efficiently

(c) Giovanni De Micheli

74

Summary

¢ State extraction can be performed efficiently to:

A Apply state-based optimization techniques

A Apply verification techniques

¢ State extraction is based on forward and backward state
space traversal:

A Represent state space implicitly with BDDs

Almportant to manage the space size, which grows exponentially
with the number of registers

(c) Giovanni De Micheli 75

