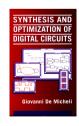
## Sequential Logic Synthesis

# Giovanni De Micheli Integrated Systems Laboratory







#### **Module 1**

- Objective
  - ▲ Motivation and assumptions for sequential synthesis
  - ▲ Finite-state machine design and optimization

## **Synchronous logic circuits**

- Interconnection of
  - **▲** Combinational logic gates
  - **▲** Synchronous delay elements
    - **▼** Edge-triggered, master/slave
- Assumptions
  - ▲ No direct combinational feedback
  - **▲** Single-phase clocking
- Extensions to
  - **▲** Multiple-phase clocking
  - ▲ Gated latches

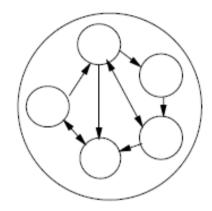
## **Modeling synchronous circuits**

- Circuit are modeled in hardware languages
  - ▲ Circuit model may be directly related to FSM model
    - **▼** Description by: switch-case
  - ▲ Circuit model may be structural
    - **▼** Explicit definition of registers
- Sequential circuit models can be generated from high-level models
  - **▲** Control generation in high-level synthesis

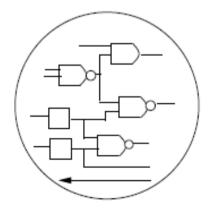
## **Modeling synchronous circuits**

- **◆ State-based model:** 
  - ▲ Model circuits as finite-state machines (FSMs)
  - ▲ Represent by state tables/diagrams
  - ▲ Apply exact/heuristic algorithms for:
    - **▼** State minimization
    - **▼** State encoding
- Structural model
  - ▲ Represent circuit by synchronous logic network
  - ▲ Apply
    - **▼** Retiming
    - **▼** Logic transformations

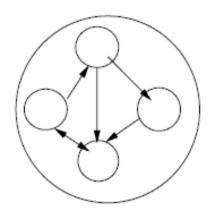
## **State-based optimization**



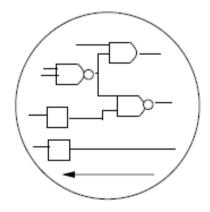
FSM Specification



State Encoding



State Minimization



**Combinational Optimization** 

## **Modeling synchronous circuits**

- Advantages and disadvantages of models
- State-based model
  - **▲** Explicit notion of state
  - ▲ Implicit notion of area and delay
- Structural model
  - ▲ Implicit notion of state
  - ▲ Explicit notion of area and delay
- Transition from a model to another is possible
  - ▲ State encoding
  - ▲ State extraction

## **Sequential logic optimization**

## ◆Typical flow

- **△**Optimize FSM state model first
  - **▼**Reduce complexity of the model
  - **▼**E.g., apply state minimization
  - **▼**Correlates to area reduction
- ▲ Encode states and obtain a structural model
  - **▼**Apply retiming and transformations
  - **▼**Achieve performance enhancement
- **▲**Use state extraction for verification purposes

#### Formal finite-state machine model

- ◆ A set of primary input patterns X
- A set of primary output patterns Y
- ◆ A set of states S
- ♦ A state transition function:  $\delta$ : X × S → S
- **◆** An output function:
  - $\triangle$   $\lambda$ : X  $\times$  S  $\rightarrow$  Y for Mealy models
  - $\land$   $\lambda$ : S  $\rightarrow$  Y for Moore models

#### **State minimization**

- Classic problem
  - ▲ Exact and heuristic algorithms are available
  - ▲ Objective is to reduce the number of states and hence the area
- Completely-specified finite-state machines
  - ▲ No don 't care conditions
  - ▲ Polynomial-time solutions
- Incompletely-specified finite-state machines
  - **▲** Unspecified transitions and/or outputs
    - **▼** Usual case in synthesis
  - ▲ Intractable problem:
    - **▼** Requires binate covering

# State minimization for completely-specified FSMs

- **◆** Equivalent states:
  - ▲ Given any input sequence, the corresponding output sequence match
- **◆** Theorem:
  - ▲ Two states are equivalent if and only if:
    - **▼** They lead to identical outputs and their next-states are equivalent
- Equivalence is transitive
  - ▲ Partition states into equivalence classes
  - ▲ Minimum finite-state machine is unique

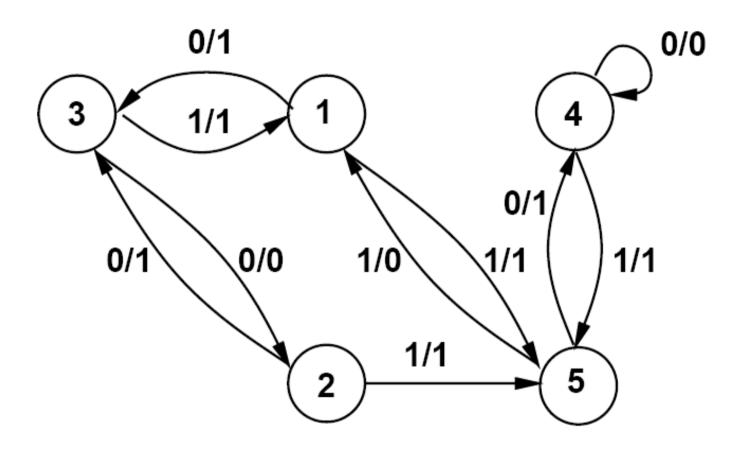
# State minimization for completely-specified FSMs

- Stepwise partition refinement:
  - ▲ Initially:
    - **▼** All states in the same partition block
  - ▲ Iteratively:
    - **▼** Refine partition blocks
  - ▲ At convergence:
    - **▼** Partition blocks identify equivalent states
- Refinement can be done in two directions
  - ▲ Transitions from states in block to other states
    - **▼** Classic method. Quadratic complexity
  - ▲ Transitions *into* states of block under consideration
    - **▼** Inverted tables. Hopcroft's algorithm.

## **Example of refinement**

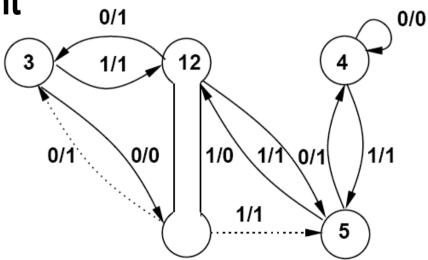
- ◆Initial partition:
- Iteration:
  - $All_{k+1}$ : States belong to the same block if they were previously in the same block and their next states are in the same block of  $\Pi_k$  for any input
- **◆**Convergence:

| INPUT | STATE | N-STATE    | OUTPUT |
|-------|-------|------------|--------|
| 0     | $s_1$ | <i>s</i> 3 | 1      |
| 1     | $s_1$ | $s_5$      | 1      |
| 0     | $s_2$ | <i>s</i> 3 | 1      |
| 1     | $s_2$ | $s_5$      | 1      |
| 0     | $s_3$ | $s_2$      | 0      |
| 1     | $s_3$ | $s_1$      | 1      |
| 0     | $s_4$ | 84         | 0      |
| 1     | $s_4$ | $s_5$      | 1      |
| 0     | s5    | 84         | 1      |
| 1     | $s_5$ | $s_1$      | 0      |



- $\bullet \Pi_2$  is a partition into equivalence classes
  - **▲**No further refinement is possible

 $\triangle$ States {  $s_1$ ,  $s_2$  } are equivalent



# State minimization for incompletely-specified finite-state machines

- Applicable input sequences
  - ▲ All transitions are specified
- Compatible states
  - ▲ Given any applicable input sequence, the corresponding output sequence match
- **◆** Theorem:
  - ▲ Two states are compatible if and only if:
    - **▼** They lead to identical outputs
      - (when both are specified)
    - **▼** And their next state is compatible
      - (when both are specified)

# State minimization for incompletely-specified finite-state machines

- Compatibility is not an equivalence relation
- Minimum finite-state machine is not unique
- Implication relation make the problem intractable
  - ▲ Two states may be compatible, subject to other states being compatible.
  - ▲ Implications are binate satisfiability clauses
    - $\blacksquare$  a -> b = a'+b

| INPUT | STATE                 | N-STATE               | OUTPUT |
|-------|-----------------------|-----------------------|--------|
| 0     | $s_1$                 | $s_3$                 | 1      |
| 1     | $s_1$                 | $s_5$                 | *      |
| 0     | $s_2$                 | $s_3$                 | *      |
| 1     | $s_2$                 | $s_5$                 | 1      |
| 0     | 83                    | $s_2$                 | 0      |
| 1     | <i>s</i> <sub>3</sub> | $s_1$                 | 1      |
| 0     | 84                    | 84                    | 0      |
| 1     | 84                    | <i>s</i> <sub>5</sub> | 1      |
| 0     | $s_5$                 | 84                    | 1      |
| 1     | $s_5$                 | $s_1$                 | 0      |

#### **Trivial method**

- Consider all possible don 't care assignments
  - ▲n don't care imply
    - **▼ 2**<sup>n</sup> completely specified FSMs
    - **▼ 2**<sup>n</sup> solutions
- **◆** Example:
  - ▲ Replace \* by 1

$$\blacksquare \Pi_1 = \{ \{ s_1, s_2 \}, \{ s_3 \}, \{ s_4 \}, \{ s_5 \} \}$$

▲ Replace \* by 0

$$\nabla \Pi_1 = \{ \{ s_1, s_5 \}, \{ s_2, s_3, s_4 \} \}$$

### Compatibility and implications Example

- **◆**Compatible states {s₁, s₂}
- $\bullet$ If  $\{s_3, s_4\}$  are compatible
  - $\triangle$  Then  $\{s_1, s_5\}$  are also compatible
- ♦Incompatible states  $\{s_2, s_5\}$

| INPUT | STATE          | N-STATE               | OUTPUT |
|-------|----------------|-----------------------|--------|
| 0     | $s_1$          | <i>s</i> <sub>3</sub> | 1      |
| 1     | $s_1$          | $s_5$                 | *      |
| 0     | s <sub>2</sub> | <i>s</i> <sub>3</sub> | *      |
| 1     | $s_2$          | <i>s</i> <sub>5</sub> | 1      |
| 0     | $s_3$          | 82                    | 0      |
| 1     | $s_3$          | $s_1$                 | 1      |
| 0     | 84             | 84                    | 0      |
| 1     | 84             | <i>s</i> <sub>5</sub> | 1      |
| 0     | $s_5$          | 84                    | 1      |
| 1     | $s_5$          | $s_1$                 | 0      |

## **Compatibility and implications**

#### **◆**Compatible pairs:

- $\blacktriangle \{s_1, s_2\}$
- $\blacktriangle \{s_1, s_5\} \leftarrow \{s_3, s_4\}$
- $\blacktriangle \{s_2, s_4\} \leftarrow \{s_3, s_4\}$
- $\blacktriangle \{s_2, s_3\} \leftarrow \{s_1, s_5\}$
- $\blacktriangle \{s_3, s_4\} \leftarrow \{s_2, s_4\} \ \ \ \ \ \ \ \ \{s_1, s_5\}$

#### **◆Incompatible pairs**

- $\blacktriangle \{s_2, s_5\}$
- $\blacktriangle \{s_3, s_5\}$
- $\blacktriangle \{s_1, s_4\}$
- $\blacktriangle \{s_4, s_5\}$
- $\blacktriangle \{s_1, s_3\}$

| INPUT | STATE                 | N-STATE               | OUTPUT |
|-------|-----------------------|-----------------------|--------|
| 0     | $s_1$                 | <i>s</i> <sub>3</sub> | 1      |
| 1     | $s_1$                 | s <sub>5</sub>        | *      |
| 0     | $s_2$                 | 83                    | *      |
| 1     | $s_2$                 | <i>s</i> <sub>5</sub> | 1      |
| 0     | $s_3$                 | <i>s</i> <sub>2</sub> | 0      |
| 1     | <i>s</i> <sub>3</sub> | $s_1$                 | 1      |
| 0     | 84                    | 84                    | 0      |
| 1     | 84                    | $s_5$                 | 1      |
| 0     | $s_5$                 | 84                    | 1      |
| 1     | $s_5$                 | $s_1$                 | 0      |

## **Compatibility and implications**

- ◆ A class of compatible states is such that all state pairs are compatible
- A class is maximal
  - ▲ If not subset of another class
- **◆ Closure property** 
  - ▲ A set of classes such that all compatibility implications are satisfied
- ◆ The set of maximal compatibility classes
  - ▲ Has the closure property
  - ▲ May not provide a minimum solution

## Maximum compatibility classes

### **◆** Example:

$$\blacktriangle \{s_1, s_2\}$$

$$\blacktriangle \{s_1, s_5\} \leftarrow \{s_3, s_4\}$$

$$\blacktriangle \{s_2, s_3, s_4\} \leftarrow \{s_1, s_5\}$$

**◆**Cover with all MCC has cardinality 3

## **Exact problem formulation**

- Prime compatibility classes:
  - ▲ Compatibility classes having the property that they are not subset of other classes implying the same (or subset) of classes
- Compute all prime compatibility classes
- Select a minimum number of prime classes
  - ▲ Such that all states are covered
  - ▲ All implications are satisfied
- Exact solution requires binate cover
- Good approximation methods exists
  - **▲** Stamina

## **Prime compatibility classes**

### Example:

- $\blacktriangle{s_1, s_2}$
- $\blacktriangle\{s_1, s_5\} \leftarrow \{s_3, s_4\}$
- $\blacktriangle \{s_2, s_3, s_4\} \leftarrow \{s_1, s_5\}$

#### Minimum cover:

$$\blacktriangle \{s_1, s_5\}, \{s_2, s_3, s_4\}$$

▲ Minimun cover has cardinality 2

## State encoding

- Determine a binary encoding of the states
  - ▲ Optimizing some property of the representation (mainly area)
- ◆ Two-level model for combinational logic
  - ▲ Methods based on symbolic optimization
    - **▼** Minimize a symbolic cover of the finite state machine
    - **▼** Formulate and solve a constrained encoding problem
- Multiple-level model
  - ▲ Some heuristic methods that look for encoding which privilege cube and/or kernel extraction
  - ▲ Weak correlation with area minimality

| INPUT | P-STATE    | N-STATE    | OUTPUT |
|-------|------------|------------|--------|
| 0     | s1         | s3         | 0      |
| 1     | s1         | s3         | 0      |
| 0     | s2         | s3         | 0      |
| 1     | s2         | s1         | 1      |
| 0     | s3         | <b>s</b> 5 | 0      |
| 1     | s3         | <b>s4</b>  | 1      |
| 0     | <b>s4</b>  | s2         | 1      |
| 1     | s4         | s3         | 0      |
| 0     | <b>s</b> 5 | s2         | 1      |
| 1     | <b>s</b> 5 | <b>s</b> 5 | 0      |

#### Minimum symbolic cover:

| * | s1s2s4 | s3 | 0 |
|---|--------|----|---|
| 1 | s2     | s1 | 1 |
| 0 | s4s5   | s2 | 1 |
| 1 | s3     | s4 | 1 |

#### • Encoded cover:

| * | 1** | 001 | 0 |
|---|-----|-----|---|
| 1 | 101 | 111 | 1 |
| 0 | *00 | 101 | 1 |
| 1 | 001 | 100 | 1 |

# **Summary finite-state machine optimization**

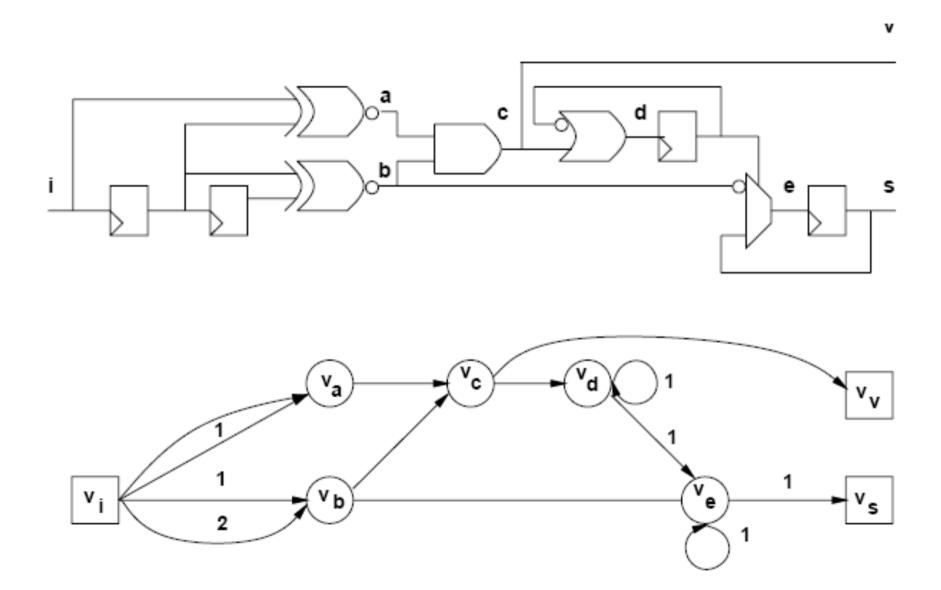
- FSM optimization has been widely researched
  - ▲ Classic and newer approaches
- State minimization and encoding correlate to area reduction
  - ▲ Useful, but with limited impact
- Performance-oriented FSM optimization has mixed results
  - ▲ Performance optimization is usually done by structural methods

#### Module 2

- Objective
  - ▲ Structural representation of sequential circuits
  - **▲** Retiming
  - **▲** Extensions

## Structural model for sequential circuits

- Synchronous logic network
  - ▲ Variables
  - ▲ Boolean equations
  - ▲ Synchronous delay annotation
- Synchronous network graph
  - ▲ Vertices ↔ equations ↔ I/O, gates
  - **▲** Edges ↔ dependencies ↔ nets
  - **▲** Weights ↔ synchronous delays ↔ registers

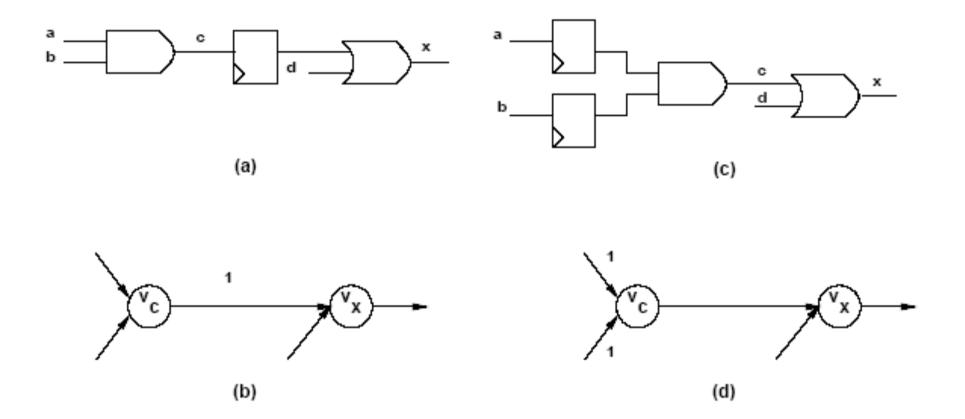


$$a^{(n)} = i^{(n)} \oplus i^{(n-1)}$$
  $a = i \oplus i@1$   
 $b^{(n)} = i^{(n-1)} \oplus i^{(n-2)}$   $b = i@1 \oplus i@2$   
 $c^{(n)} = a^{(n)}b^{(n)}$   $c = a b$   
 $d^{(n)} = c^{(n)} + d'^{(n-1)}$   $d = c + d@1'$   
 $e^{(n)} = d^{(n)}e^{(n-1)} + d'^{(n)}b'^{(n)}$   $e = d e@1 + d' b'$   
 $v^{(n)} = c^{(n)}$   $v = c$   
 $s^{(n)} = e^{(n-1)}$   $s = e@1$ 

## Approaches to sequential synthesis

- Optimize combinational logic only
  - ▲ Freeze circuit at register boundary
  - ▲ Modify equation and network graph topology
- Retiming
  - ▲ Move register positions. Change weights on graph
  - ▲ Preserve network topology
- Synchronous transformations
  - ▲ Blend combinational transformations and retiming
  - ▲ Powerful, but complex to use

## **Example of local retiming**



# Retiming

- Global optimization technique
- Change register positions
  - ▲Affects area:
    - **▼**Retiming changes register count
  - **▲**Affects cycle-time:
    - **▼**Changes path delays between register pairs
- Retiming algorithms have polynomial-time complexity

# **Retiming assumptions**

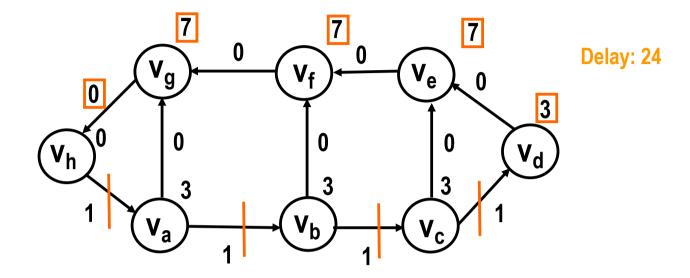
- Delay is constant at each vertex
  - ▲ No fanout delay dependency
- Graph topology is invariant
  - ▲ No logic transformations
- Synchronous implementation
  - **▲** Cycles have positive weights
    - **▼** Each feedback loop has to be broken by at least one register
  - ▲ Edges have non-negative weights
    - **▼** Physical registers cannot anticipate time
- Consider topological paths
  - ▲ No false path analysis

# Retiming

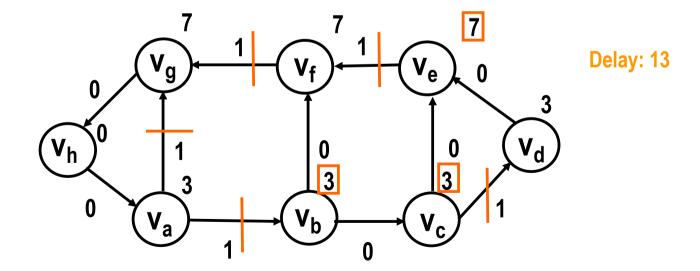
- Retiming of a vertex v
  - ▲ Integer r<sub>v</sub>
  - ▲ Registers moved from output to input: r<sub>v</sub> positive
  - ▲ Registers moved from input to output: r<sub>v</sub> negative
- Retiming of a network
  - ▲ Vector whose entries are the retiming at various vertices
- ◆ A family of I/O equivalent networks are specified by:
  - **▲** The original network
  - ▲ A set of vectors satisfying specific constraints
    - **▼** Legal retiming

# **Example**





#### **Retimed graph**



# **Definitions and properties**

#### Definitions:

- $\triangle$  w(  $v_i$ ,  $v_j$ ) weight on edge ( $v_i$ ,  $v_j$ )
- $\triangle$  ( $v_i$ , ...,  $v_j$ ) path from  $v_i$  to  $v_j$
- $\triangle$  w(  $v_i$ , ...,  $v_j$ ) weight on path from  $v_i$  to  $v_j$
- $\Delta d(v_i, ..., v_j)$  combinational delay on path from  $v_i$  to  $v_j$

## Properties:

▲ Retiming of an edge ( v<sub>i</sub>, v<sub>j</sub> )

$$\nabla$$
  $\hat{\mathbf{w}}_{ij} = \mathbf{w}_{ij} + \mathbf{r}_j - \mathbf{r}_i$ 



$$\nabla$$
  $\hat{w}$  (  $v_i, ..., v_j$ ) =  $w(v_i, ..., v_j) + r_j - r_i$ 

▲ Cycle weights are invariant



# **Legal retiming**

- ◆ A retiming vector is legal iff:
  - ▲ No edge weight is negative

$$\nabla \hat{\mathbf{w}}_{ij}$$
 (  $\mathbf{v}_i, \mathbf{v}_j$ ) =  $\mathbf{w}_{ij}$  ( $\mathbf{v}_i, \mathbf{v}_j$ ) +  $\mathbf{r}_j - \mathbf{r}_i \ge 0$  for all i, j

- ▲ Given a clock period φ:
- A Each path  $(v_i, ..., v_j)$  with d  $(v_i, ..., v_j) > φ$  has at least one register:

$$\blacktriangledown$$
  $\hat{w}$  (  $v_i$ , ...,  $v_j$ ) = w ( $v_i$ , ...,  $v_j$ ) +  $r_j$  -  $r_i$  ≥ 1 for all i, j

 $\triangle$  Equivalently, each combinational path delay is less than  $\varphi$ 

# Refined analysis

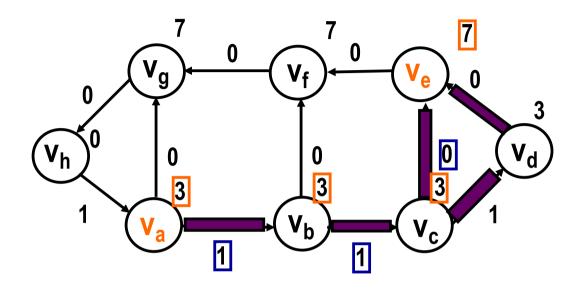
Least-register path

 $\blacktriangle$  W ( $v_i$ ,  $v_j$ ) = min w ( $v_i$ , ...,  $v_j$ ) over all paths between  $v_i$  and  $v_j$ 

Critical delay:

- ▲ D  $(v_i, v_j) = \max d(v_i, ..., v_j)$  over all paths between  $v_i$  and  $v_j$  with weight W  $(v_i, v_j)$
- ◆ There exist a vertex pair (v<sub>i</sub>, v<sub>j</sub>) whose delay D (v<sub>i</sub>, v<sub>j</sub>) bounds the cycle time

# **Example**



•Vertices: v<sub>a</sub>, v<sub>e</sub>

•Paths:  $(v_a, v_b, v_c, v_e)$  and  $(v_a, v_b, v_c, v_d, v_e)$ 

• $W(v_a, v_e) = 2$ 

•D( $v_a, v_e$ ) = 16

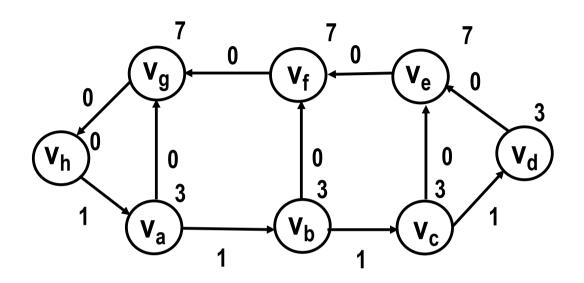
# Minimum cycle-time retiming problem

- Find the minimum value of the clock period φ such that there exist a retiming vector where:
  - $Arr r_i r_j \le w_{ij}$  for all  $(v_i, v_j)$ 
    - **▼** All registers are implementable
  - $Arr r_i r_i \le W(v_i, v_i) 1$  for all  $(v_i, v_i)$  such that  $D(v_i, v_i) > \varphi$ 
    - **▼** All timing path constraints are satisfied
- Solution
  - ▲ Given a value of φ
  - $\blacktriangle$  Solve linear constraints A r ≤ b
    - **▼** Mixed integer-linear program
  - ▲ A set of inequalities has a solution if the constraint graph has no positive cycles
    - **▼** Bellman-Ford algorithm compute longest path
  - ▲ Iterative algorithm
    - **▼** Relaxation

# Minimum cycle-time retiming algorithm

- ◆ Compute all pair path weights W (v<sub>i</sub>, v<sub>j</sub>) and delays D (v<sub>i</sub>, v<sub>j</sub>)
  - ▲ Warshall-Floyd algorithm with complexity O(|V|³)
- ◆ Sort the elements of D (v<sub>i</sub>, v<sub>i</sub>) in decreasing order
  - **Δ** Because an element of **D** is the minimum φ
- Binary search for a φ in D (v<sub>i</sub>, v<sub>i</sub>) such that
  - ▲ There exists a legal retiming
  - ▲ Bellman-Ford algorithm with complexity O( |V|³)
- ◆ Remarks
  - ▲ Result is a global optimum
  - ▲ Overall complexity is O(|V|³ log |V|)

# **Example: original graph**

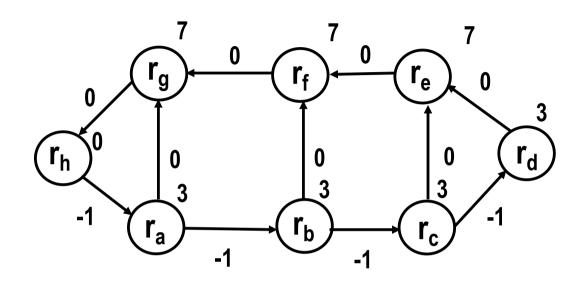


### •Constraints (first type):

- $r_a$   $r_b \le 1$  or equivalently  $r_b \ge r_a 1$
- $r_c$   $r_b \le 1$  or equivalently  $r_c \ge r_b 1$

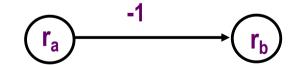
• ...

# **Example: constraint graph**



#### •Constraints (first type):

•  $r_a$  -  $r_b \le 1$  or equivalently  $r_b \ge r_a - 1$ 



•  $r_c$  -  $r_b \le 1$  or equivalently  $r_c \ge r_b - 1$ 

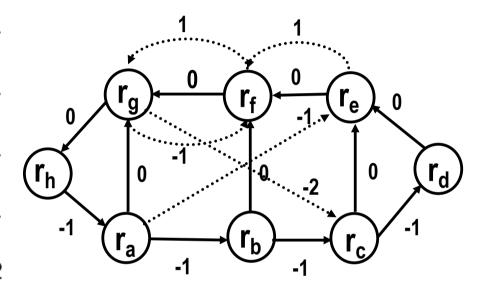
• ...

## **Example**

- Sort elements of D:
  - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
- ightharpoonup Select  $\phi$  = 19
  - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
  - ▲ Pass: legal retiming found
- $\bullet$  Select  $\phi = 13$ 
  - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
  - ▲ Pass: legal retiming found
- ♦ Select φ < 13</p>
  - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
  - ▲ Fail: no legal retiming found
- Fastest cycle time is  $\varphi = 13$ . Corresponding retiming vector is used

# Example $\varphi = 13$

 $r_a-r_e\leq 2-1$  or equivalently  $r_e\geq r_a-1$   $r_e-r_f\leq 0-1$  or equivalently  $r_f\geq r_e+1$   $r_f-r_g\leq 0-1$  or equivalently  $r_g\geq r_f+1$   $r_g-r_f\leq 2-1$  or equivalently  $r_f\geq r_g-1$   $r_g-r_c\leq 3-1$  or equivalently  $r_c\geq r_g-2$ 

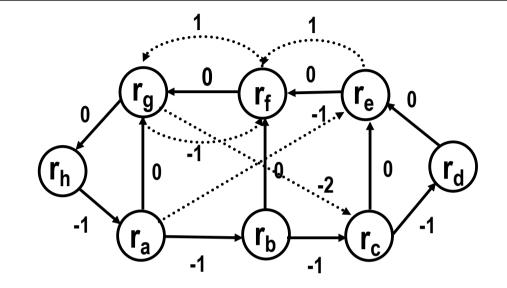


# Example $\varphi = 13$

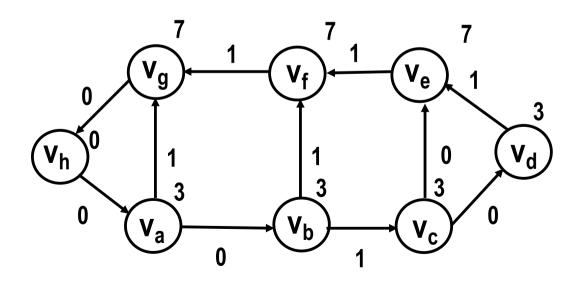
**◆**Constraint graph:

**◆**Longest path from source

**▲** -[12232100]

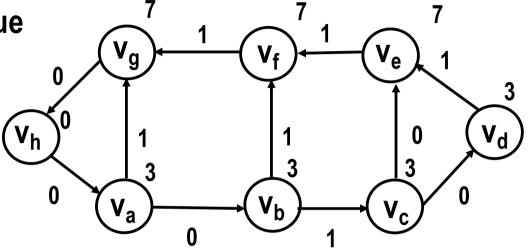


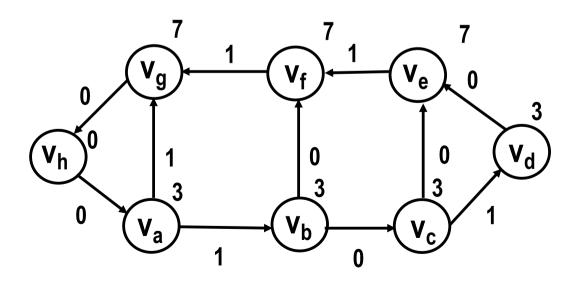
◆Retimed graph



# Example $\varphi = 13$

**◆**The solution is not unique





# **Relaxation-based retiming**

- Most common algorithm for retiming
  - ▲ Avoids storage of matrices W and D
  - ▲ Applicable to large circuits
- Rationale
  - $\triangle$  Search for decreasing  $\varphi$  in fixed step
    - ightharpoonup Look for values of  $\phi$  compatible with peripheral circuits
  - ▲ Use efficient method to determine legality
    - **▼** Network graph is often very sparse
  - ▲ Can be coupled with topological timing analysis

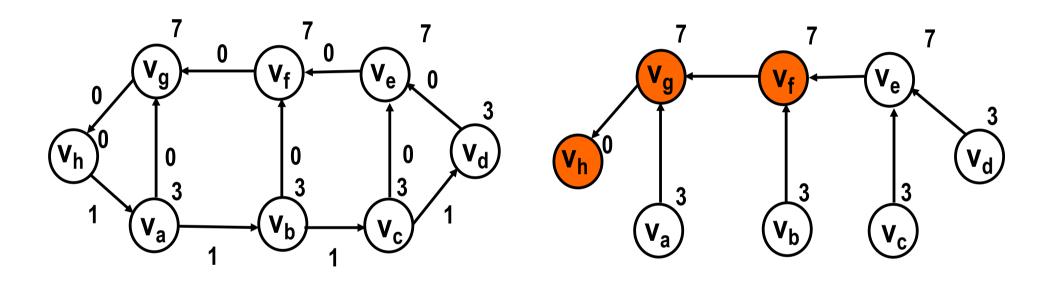
# **Relaxation-based retiming**

- Start with a given cycle-time φ
- Look for paths with excessive delays
- Make such paths shorter
  - ▲ By bringing the terminal register closer
  - ▲ Some other paths may become longer
  - ▲ Namely, those path whose tail has been moved
- Use an iterative approach

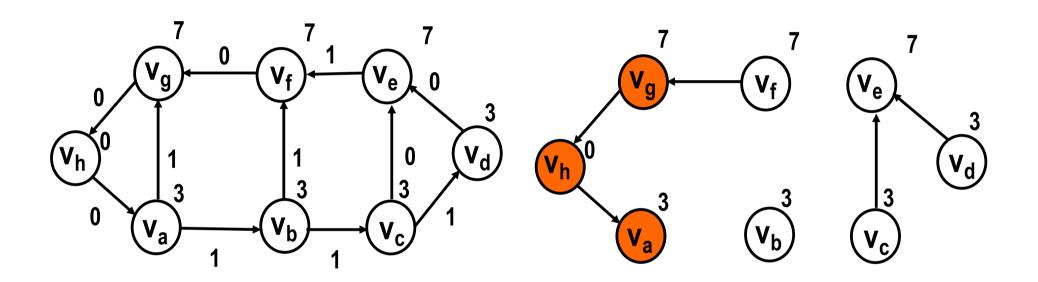
# **Relaxation-based retiming**

- Define data ready time at each node
  - ▲ Total delay from register boundary
- Iterative approach
  - ▲ Find vertices with data ready > φ
  - ▲ Retime these vertices by 1
- Algorithm properties
  - Arr If at some iteration there is no vertex with *data ready* > Arr, a legal retiming has been found
  - $\triangle$  If a legal retiming is not found in |V| iterations, then no legal retiming exists for that  $\varphi$

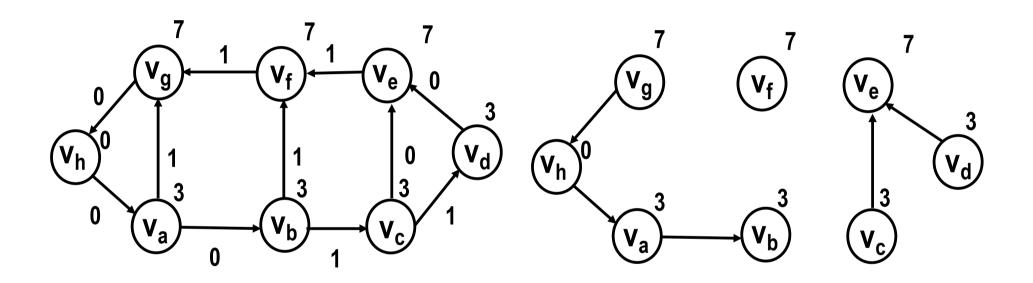
# Example $\varphi = 13$ iteration = 1



# Example $\varphi = 13$ iteration = 2



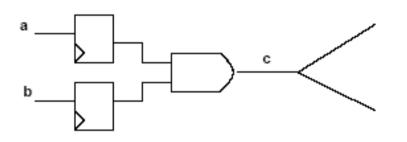
# Example $\varphi = 13$ iteration = 3

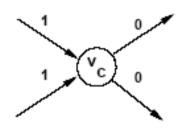


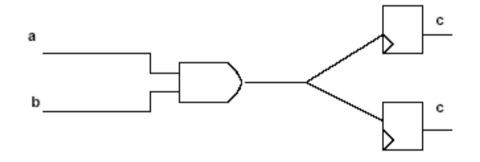
# **Retiming for minimum area**

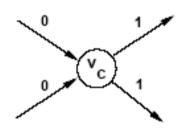
- Find a retiming vector that minimizes the number of registers
- Simple area modeling
  - ▲ Every edge with a positive weight denotes registers
  - ▲ Total register area is proportional to the sum of all weights
- Register sharing model
  - ▲ Every set of positively-weighted edges with common tail is realized by a shift register with taps
  - ▲ Total register area is proportional to the sum, over all vertices, of the maxima of weights on outgoing edges

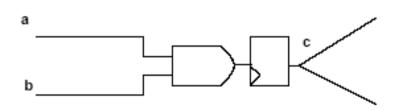
# **Example**

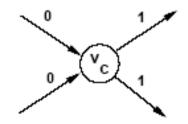












# Minimum area retiming simple model

- Register variation at node v
  - $Arr r_v$  (indegree(v) outdegree(v))
- ◆ Total area variation:
  - $\Delta \Sigma r_v$  (indegree(v) outdegree(v))
- **◆** Area minimization problem:
  - $\blacktriangle$  Min  $\Sigma$  r<sub>v</sub> (indegree(v) outdegree(v))
  - ▲ Such that  $r_i r_j \le w_{ij}$  for all  $(v_i, v_j)$

# Minimum area retiming under timing constraint

- Area recovery under timing constraint
  - $\blacktriangle$  Min  $\Sigma$  r<sub>v</sub> (indegree(v) outdegree(v)) such that:
  - $Arr r_i r_j \le w_{ij}$  for all  $(v_i, v_j)$  and
  - $Arr r_i r_j \le W(v_i, v_j) 1$  for all  $(v_i, v_j)$  such that  $D(v_i, v_j) > \varphi$
- Common implementation is by integer linear program
  - ▲ Problem can alternatively be transformed into a matching problem and solved by Edmonds-Karp algorithm
- Register sharing
  - ▲ Construct auxiliary network and apply this formulation.
  - ▲ Auxiliary network construction takes into account register sharing

# Other problems related to retiming

- Retiming pipelined circuits
  - ▲ Balance pipe stages by using retiming
  - ▲ Trade-off latency versus cycle time
- Peripheral retiming
  - ▲ Use retiming to move registers to periphery of a circuit
  - ▲ Restore registers after optimizing combinational logic
- Wire pipelining
  - **▲** Use retiming to pipeline interconnection wires
  - ▲ Model sequential and combinational macros
  - **▲** Consider wire delay and buffering

# **Summary of retiming**

- Sequential optimization technique for:
  - **▲** Cycle time or register area
- Applicable to
  - **▲** Synchronous logic networks
  - ▲ Architectural models of data paths
    - **▼** Vertices represent complex (arithmetic) operators
  - ▲ Exact algorithm in polynomial time
- Extension and issues
  - ▲ Delay modeling
  - ▲ Network granularity

## Module 3

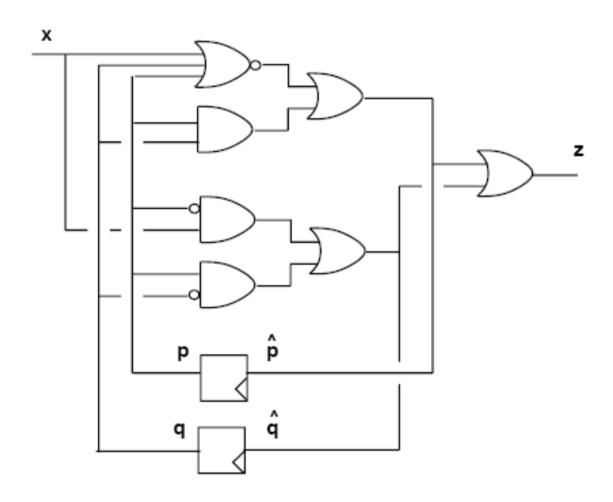
- Objective
  - ▲ Relating state-based and structural models
  - **▲** State extraction

# Relating the sequential models

- State encoding
  - ▲ Maps a state-based representation into a structural one
- ◆ State extraction
  - ▲ Recovers the state information from a structural model
- Remark
  - ▲ A circuit with n registers may have 2<sup>n</sup> states
  - **▲** Unreachable states

### **State extraction**

- ◆State variables: p, q
- ◆Initial state p=0; q=0;
- **◆**Four possible states



### **State extraction**

## Reachability analysis

- ▲ Given a state, determine which states are reachable for some inputs
- ▲ Given a state subset, determine the reachable state subset
- ▲ Start from an initial state
- **▲** Stop when convergence is reached

#### Notation:

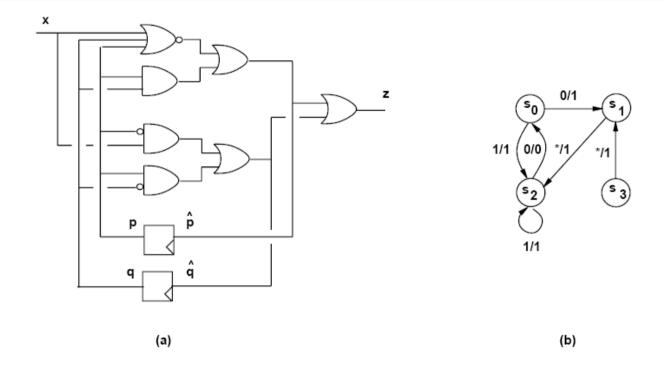
- ▲ A state (or a state subset) is represented by an expression over the state variables
- ▲ Implicit representation

# Reachability analysis

- State transition function: f
- ◆ Initial state: r<sub>0</sub>
- **◆** States reachable from r<sub>0</sub>
  - ▲ Image of r<sub>0</sub> under f
- ◆ States reachable from set r<sub>k</sub>
  - ▲ Image of r<sub>k</sub> under f
- Iteration
  - $Arr r_{k+1} = r_k U$  (image of  $r_k$  under f)
- Convergence

$$Arr r_{k+1} = r_k$$
 for some k

# **Example**



- Initial state  $r_0 = p'q'$ .
- The state transition function  $\mathbf{f} = \begin{bmatrix} x'p'q' + pq \\ xp' + pq' \end{bmatrix}$

# **Example**

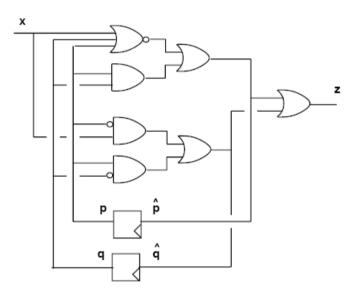
- ◆Image of p' q' under f:
  - ▲ When (p = 0 and q = 0), f reduces to  $[x' x]^T$
  - **▲** Image is [ 0 1 ]<sup>T</sup> U [ 1 0 ]<sup>T</sup>
- ◆States reachable from the reset state:

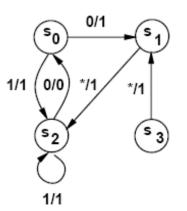
$$\triangle$$
 (p = 1; q = 0) and (p = 0; q = 1)

$$Ar_1 = p'q' + pq' + p'q = p' + q'$$

- **◆**States reacheable from r₁:
  - $\blacktriangle[00]^{\mathsf{T}} U [01]^{\mathsf{T}} U [10]^{\mathsf{T}}$
- **◆**Convergence:

$$\triangle s_0 = p' q'; s_1 = pq'; s_2 = p' q;$$





# **Completing the extraction**

- **◆**Determine state set
  - ▲ Vertex set
- **◆**Determine transitions and I/O labels
  - ▲ Edge set
  - ▲ Inverse image computation
  - ▲ Look at conditions that lead into a given state

# **Example**

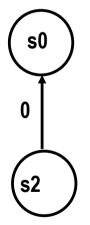
- **◆**Transition into  $s_0 = p' q'$ 
  - ▲ Patterns that make  $f = [0\ 0]^T$  are:

$$(x'p'q'+pq)'(xp'+pq')'=x'p'q$$

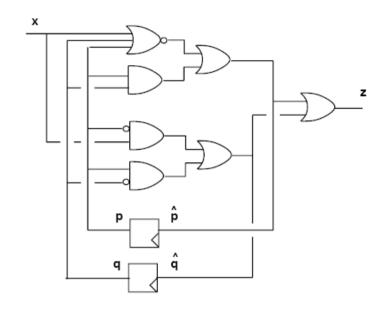
▲ Transition from state  $s_2 = p'q$  under

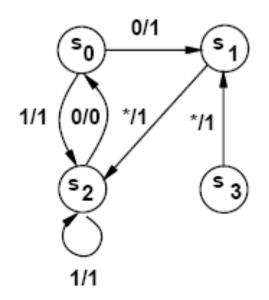
input x'

▲And so on ...









### Remarks

- Extraction is performed efficiently with implicit methods
- **◆** Model transition relation **x** (i,x,y) with BDDs
  - **▲** This function relates possible triples:
    - **▼** (input, current\_state, next\_state)
  - $\triangle$  Image of  $r_k$ :
    - $\blacktriangledown S_{i,x} (\chi(i,x,y) r_k(x))$
    - $\blacksquare$  Where  $r_k$  depends on inputs x
  - ▲ Smoothing on BDDs can be achieved efficiently

# **Summary**

- State extraction can be performed efficiently to:
  - ▲ Apply state-based optimization techniques
  - ▲ Apply verification techniques
- State extraction is based on forward and backward state space traversal:
  - ▲ Represent state space implicitly with BDDs
  - ▲ Important to manage the space size, which grows exponentially with the number of registers