
Foundations of Probabilistic Proofs (Fall 2022)
Note 5: Zero-Knowledge IPs
Date: 2022.10.04

This note contains definitions, theorems, facts, etc. that are not fully explained in lectures due to
limited time. If you think there are anything missing or any mistakes, please contact ziyi.guan@epfl.ch.

1 Rewinding power of simulators

We define malicious-verifier zero-knowledge (MVZK) in lecture and present a MVZK interactive
proof system for Graph Isomorphism. The protocol is as follows:

Prover P ((G0, G1), σ) Verifier V (G0, G1)

Sample random permutation ϕ : [n]→ [n]

Send H := ϕ(G0)

Sample b←$ {0, 1}
Send ψ := ϕ ◦ σb

Check if H = ψ(Gb)

The simulator S(Ṽ , (G0, G1)) for this protocol is defined as:

1. Sample a random bit b ∈ {0, 1},
2. Sample random permutation ψ : [n]→ [n],

3. Compute H := ψ(Gb),

4. Give H to Ṽ and get b̃,

5. If b̃ ̸= b go to step 1,

6. Output ((G0, G1), H, b̃, ψ).

In step 5, S repeats the whole process if the bit sampled and the bit received by the Ṽ are different.
In particular, S works since it uses rejection sampling. i.e. it rejects and rewinds until the
condition b̃ = b is met. By rejection sampling, we mean that we throw away ”bad” samples during
the sampling process. For example, say we have a square and an inscribed circle, and we want to
sample points from the circle. To do that, we can sample points from the square, and throw away
the samples outside of the circle. Using this technique, the probability distribution of the view of
the simulator and the malicious verifier is the same when b̃ = b.

We note that almost all simulators for malicious verifiers use the rewinding strategy. Now we
give a general template of how rewinding simulators work.

• When proving zero-knowledge of an interactive protocol, we consider a malicious verifier Ṽ
and an honest prover P.

• P knows some information that Ṽ does not, and we want to hide this information during the
protocol from the (cheating) verifier Ṽ.

– Formally, we call it the zero-knowledge property: whatever Ṽ outputs from this interac-
tion, Ṽ could have generated without interacting with P at all.

– This prevents Ṽ from learning any new information through interactions.

• To prove the zero-knowledge property, we need to show that given the distribution of the
interaction transcript between an honest prover and the malicious verifier Ṽ, we can sample
the same (or close) distribution without interactions with any honest provers. Moreover, we
only have black-box access to Ṽ, i.e. we will ask as the honest prover and send messages to
Ṽ.

• Rewinding means that, during the process of sending simulated messages z1, z2, . . . , zm to Ṽ,
it is possible to go back to a previous state of Ṽ and send in a different zi for all i ∈ [m].

2 Complexity classes and relationships

In the lecture, we mention some limitations of zero-knowledge interactive proofs. In particular, we
talk about how adding the extra property of zero-knowledge will significantly decrease the power
of IP. We present the formal definitions of the complexity classes mention and their relationships
with previously introduced complexity classes, and IP with zero-knowledge.

First, we recap the limitations we discuss in lecture:

• HVZK-IP: all languages in IP that has honest-verifier zero-knowledge.

• MVZK-IP: all languages in IP that has malicious-verifier zero-knowledge.

• MVZK-IP ⊆ HVZK-IP ⊆ IP: clear from definitions.

• BPP ⊆ MVZK-IP.

– Similar to P, but defined using polynomial-time probabilistic Turing machines (PTM).

– A probabilistic Turing machine differ from a plain Turing machine in that it has mul-
tiple transition functions, and it chooses between them according to some probabilistic
distribution.

∗ A PTM can have stochastic results in terms of both runtime and acceptance of a
particular input.

∗ The expected runtime of a PTM refers to the average runtime of this machine.

∗ The runtime of a PTM refers to the worst case runtime, i.e. the upper bound of
the runtime in all executions of the machine.

∗ There will be acceptance probability associated with a PTM. Also, a PTM may
behave different with respect to the same input.

– GI ∈ MVZK-IP as shown in lecture, but GI is not known to be in BPP: a possible gap.

– We have seen one problem in BPP before: Polynomial identity testing (PIT), which is
resolved by applying the Schwartz-Zippel Lemma 1.

• MVZK-IP ⊆ HVZK-IP ⊆ AM ∩ coAM.

1The Schwartz-Zippel lemma is defined in note 2

– Arthur-Merlin (AM): The class of decision problems for which a ”yes” answer can be
verified by an Arthur-Merlin protocol, as follows:

Merlin Arthur(x)

Generate a challenge based on x

Generate randomness

Send the challenge and the randomness

Send a response based on the messages

Decides whether to accept

where Arthur is a BPP verifier with an algorithm such that

∗ If the answer if ”yes”, then Merlin can act in such a way that Arthur accepts with
probability at least 2/3.

∗ If the answer is ”no”, then however Merlin acts, Arthur will reject with probability
at least 2/3.

– AM∩ coAM: The class of decision problems for which both ”yes” and ”no” answers can
be verified by an AM protocol.

∗ AM ∩ coAM is believed to be small compared to PSPACE: Having zero-knowledge
property reduces the power of IP.

3 Computational indistinguishability

In the lecture, we show the limitations of zero-knowledge IP. One option to overcome the limitations
is to relax the requirement on the view sampled by the simulator. More specifically, instead of
requiring S to sample a view that has the same distribution as the actual view, we require S(Ṽ , X)
to be computationally close to the actual view view(⟨P, Ṽ ⟩(X)). We now formalise this notion of
computational closeness, or, more commonly referred to, the computational indistinguishability.

Definition 1. Let {Xn}n∈N and {Yn}n∈N be two family of distributions in which n is the length
of input. We say that they are computationally indistinguishable if for any probabilistic
polynomial-time algorithm A such that

δ(n) =

∣∣∣∣ Pr
x←Xn

[A(x) = 1]− Pr
x←Yn

[A(x) = 1]

∣∣∣∣ ,
where δ(n) is a negligible function in n.

Remark 1. We do not have a formal definition for negligible functions. In general, we say a
function f is negligible if for every positive polynomial poly(·), there exists a positive integer Npoly

such that for all x > Npoly,

|f(x)| < 1

poly(x)
.

Example 1. Consider family of distributions {Xn}n∈N and {Yn}n∈N such that

Xn =

{
0n with probability 2−n,

1n with probability 1− 2−n;
and Yn = 1n.

We claim that {Xn}n∈N and {Yn}n∈N are computationally indistinguishable.

Proof. The main idea is that Xn would be 1n most of the times, in other words negligible for a
reasonable n. Since Yn is 1n all the time, the probability difference is negligible.

