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This note contains definitions, theorems, facts, etc. that are not fully explained in lectures due to
limited time. If you think there are anything missing or any mistakes, please contact ziyi.guan@epfl.ch.

Some of the definitions and the exercise presented in this note are adapted from the course
materials of Greats Ideas in Theoretical Computer Science taught by Professor Anıl Ada at Carnegie
Mellon University. We direct interesting readers to refer to the course website https://www.cs251.
com/ for more information.

1 IP=PSPACE by TSQBF

In the lecture, we see a proof for IP = PSPACE by designing an interactive proof system for TQBF,
a canonical PSPACE-complete problem. We adapt the idea for sumcheck protocol to this scenario,
with the help of the degree reduction operation. However, there is another possible approach, which
is the original proof Shamir gives. In particular, there is another language called TSQBF that has
nice arithmetization that we can exploit. We explain here the definition of TSQBF, and the actual
arithmetization is left as an exercise.

Definition 1. We say that a fully quantified boolean formula is simple if every occurrence of
every variable is separated from its quantification point by at most one universal quantifier (∀) and
arbitrarily many other symbols.

This might be abstract, but let’s look at some simple examples.

Example 1. Determine if the following formulae are simple and compute their values:

• ∀x1∀x2∃x3 ((x1 ∨ x2) ∧ x3)

– This is a simple formula.

– It evaluates to 0, consider x1 = 0, x2 = 0.

• ∃x1∀x2 ((x1 ∨ x2) ∧ ∀x3(x1 ∨ x3))

– This formula is not simple, the second x1 is 2 ∀’s away from its quantification.

– It evaluates to 1, draw an evaluation tree as shown in lecture.

Definition 2. TSQBF is the set of languages that contains all simple true fully quantified Boolean
formulae.

We want to use this notion of simpleness in our proof of IP = PSPACE, and luckily it turns
out that we can efficiently transform a fully quantified Boolean formula into a simple one with the
same value. The general idea is to define a fresh variable for each occurrence of each variable in
the original form. We formulate this claim in a more formal way below.

Lemma. Let Φ be a fully quantified boolean formula with variables x1, . . . , xn. We define a new
formula Ψ that has a variable for each universal quantifier crossed by each variable in Φ. For
example, if x1 crosses k universal quantifiers in Φ, then Ψ has variables x1,1, . . . , x1,k.
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Proof. We give a step-by-step proof idea of the lemma, the missing details are left as exercises to
the readers.

1. Give a boolean formula which is true if and only if x1 and x2 are equal.

• (x1 ∧ x2) ∨ (¬x1 ∧ ¬x2)

2. Let Φ = ∃x1∀x2 ((x1 ∨ x2) ∧ ∀x3(x1 ∨ x3)). By replacing the two occurrences of x1 with x1,1
and x1,2, and adding constraints and quantifiers, obtain a simple formula Ψ that has the same
value as Φ.

• ∃x1,1∀x2 ((x1,1 ∨ x2) ∧ ∃x1,2(x1,1 ∧ x1,2) ∨ (¬x1,1 ∧ ¬x1,2) ∧ (∀x3(x1,2 ∨ x3)))

3. Give an efficient algorithm that transforms a QBF Φ into an equisatisfiable simple QBF Ψ.

4. Prove the algorithm’s correctness.

2 TQBF is PSPACE-complete

In the lecture, we prove that IP = PSPACE. We describe PSPACE as the set of problems de-
cidable within polynomial space by a Turing machine. However, we do not characterize Turing
machines using the most formal mathematical languages. In this note, we revisit the definitions of
Turing machines and PSPACE and give a formal treatment, which is useful in proving the PSPACE-
completeness of TQBF.

For the sake of completeness, we present the definition of TQBF here. It is explained in detail
in the lecture.

Definition 3 (True quantified Boolean formula). A fully quantified Boolean formula is a formula in
quantified propositional logic where every variable is quantified (or bound), using either existential
or universal quantifiers, at the beginning of the sentence. In particular, a fully quantified Boolean
formula is of the form Φ = Q1x1Q2x2 . . .Qnxnφ(x1, x2, . . . , xn) where Qi ∈ {∀,∃} for i ∈ [n] and φ
is a boolean formula. The language TQBF is a formal language consisting of all the true quantified
Boolean formulas.

Since there is no free variables in a fully quantified Boolean formula Φ, Φ is equal to either true
or false. We define TQBF to be the set of all true fully quantified Boolean formulae.

Example 2. Let Φ := ∀x∃y∃z ((x ∨ z) ∧ y), Φ ∈ TQBF because (x ∨ z) ∧ y always evaluates to 1
when y = z = 1.

Definition 4 (Turing machine). A Turing machine is a 7-tuple M := (Q,Γ,Σ, δ, qstart, Qaccept, Qreject)
where:

• Q is a finite, non-empty set, which we call a state set.

• Γ is a non-empty finite set that does not contain the blank symbol ⊔, which we call the tape
alphabet.

• Σ is a finite set such that ⊔ ∈ Γ and Σ ⊂ Γ, which we call the input alphabet.



• δ : Q× Γ → Q× Γ× {L,R} is a function, which we call the transition function.

• qstart ∈ Q is the initial state.

• Qaccept ⊆ Q is set of the accepting states.

• Qreject ⊆ Q is the set of rejecting states and Qreject ∩Qaccept = ∅.

Notice that for Turing machines, we always talk about its accompanying tape that is used as
memory. The tape is just a sequence of cells that can hold any symbol from the tape alphabet.
The tape can be defined so that it is infinite in two directions (so we could imagine indexing the
cells using the integers Z), or it could be infinite in one direction, to the right (so we could imagine
indexing the cells using the natural numbers N). Fixing to an indexing standard, we can imagine
that there is a tape head that initially points to index 0. The symbol that the tape head points
to at a particular time is the symbol that the Turing machine reads. The tape head moves left or
right according to the transition function of the Turing machine. The following exercise is there to
check your understanding of Turing machines.

Exercise 1 (Turing machines with different tapes). Show that the following four types of Turing
machines are equivalent:

• A Turing machine with one singly-infinite tape (infinite in one direction).

• A Turing machine with one doubly-infinite tape (infinite in both directions).

• A Turing machine with however many tape heads you want.

• A Turing machine with 4 tapes and each with a separate tape head.

One observation we can make after the definition of the Turing machines is that we are able
to label the configuration of a Turing machine with countably many tuples. Note that a Turing
machine is defined over a finite state set, a finite alphabet, and a tape indexable by natural numbers,
which is countable. Therefore, at a given time during the running of a Turing machine, we could
label the configuration of the Turing machine by a 3-tuple (q, i, x), where q is the state of the Turing
machine at this time, the position of the tape head, and the content of the tape cell the head is
pointing to.

We now define the configuration graphs of a Turing machine, which plays an important role in
proving TQBF is PSPACE-complete.

Definition 5 (Configuration Graph). A configuration graph GM,y for a Turing machine M and in-
put y is a directed graph. In particular, V (GM,y) = {(q, i, x) : (q, i, x) are configurations of M(y)},
and E(GM,y) = {(u, v) : δ(u) = v}. Note that here we are overloading the transition function δ
because its input should not be a configuration tuple, here it means that u can be taken to v with a
one-step computation from the transition function.

Moreover, using the language of configuration graph, we say that M(y) is accepting if there is
a path from the starting configuration to an accepting configuration in GM,y.

Theorem 1. TQBF is PSPACE-complete.

Proof. Following the standard paradigm of proving C-completeness of a problem, we need to show
that TQBF ∈ PSPACE and then TQBF is PSPACE-hard.



• TQBF ∈ PSPACE:

– Our goal is to evaluate a fully quantified Boolean formula Φ = Q1x1Q2x2 . . .Qnxnφ(x1, x2, . . . , xn),
which has n variables and m clauses, within poly(n,m) space.

– We follow something similar to the Shamir’s protocol, peeling off the quantifiers one by
one, starting with Q1.

– Let Φi(x1, . . . , xn−i) be defined as follow:

Φi(x1, . . . , xn−i) := Qn−i+1xn−i+1 . . .Qnxnφ(x1, . . . , xn)

Note that Φ0 = φ and Φn = Φ.

– We could recursively write Φi in terms of Φi−1:

Φi(x1, . . . , xn−i) = Qn−i+1xn−i+1Φi−1(x1, . . . , xn−i+1)

– The recurrence can be viewed as a full binary tree on 2n leaves.

∗ A leaf node is Φ0 = φ at some assignment in {0, 1}n. Evaluating a leaf node would
cost precisely the size of the Boolean formula φ, which is S0 = O(mn) space.

∗ An internal node is Φi at some assignment in {0, 1}n−i. It suffices to evaluate Φi by
evaluating Φi−1 with the current assignment plus xi = 0 and xi = 1 and recording
this assignment in {0, 1}n−i. The space needed to evaluate an internal node is
Si = Si−1 +O(n).

– Evaluating Φ = Φn costs Sn = O(mn+ n2), which means that TQBF ∈ PSPACE.

– Notice that we are doing a depth-first post-order tree traversal (left subtree then right
subtree then node). For example, the depth-first post-order tree traversal sequence for
the tree in ̸↷?? is:

A → C → E → D → B → H → I → G → F.

We can reuse the same space by first evaluating the left subtree, storing a bit and then
evaluating the right subtree.

– Remark that we are not computing Φn in a bottom-up fashion layer by layer, which will
cost O(2n) space. That is because the 2n leaves have 2n−1 parent-nodes, and we should
keep recording the first even if we are proceeding to the last, which costs O(2n) space.

• TQBF is PSPACE-hard:

– Let L be a language in PSPACE, and M be the corresponding TM deciding L in space
S(n) where S is some polynomial S : N → N.

– Our goal is to show L ≤P
m TQBF, that is, there exists a polynomial-time function f such

that for any instance x, x ∈ L iff f(x) ∈ TQBF.

– Let GM,x be the configuration graph of M with input x, we have x ∈ L iff there is a
path in GM,x from Cstart to Caccept.

– The goal can be reformulated as: find a polynomial f such that for any instance x, there
is a path in GM,x from Cstart to Caccept iff f(x) ∈ TQBF.



Figure 1: depth-first post-order tree traversal

– We define a family of QBFs {Φi}i∈[O(S(n))] recursively such that given two configurations
C and C ′, Φi(C,C

′) = 1 iff there exists a path in GM,x from C to C ′ of length at most
2i.

– f(x) := ΦO(S(n))(Cstart, Caccept) is what we need for the reduction, and we have to argue
that ΦO(S(n)) has polynomial size.

– The base case is to construct Φ0(C,C
′) (which says that there is a one-step computation

from C to C ′).

– We can write C and C ′ as:

C := (q, i, γ0, γ1, . . . , γO(S(n)))

C ′ := (q′, i′, γ′0, γ
′
1, . . . , γ

′
O(S(n)))

where q, i and γj (respectively, q′, i′ and γ′j) are a state in Q, the head position of the

tape and the symbol in the jth cell of the tape.

– The QBF Φ0(C,C
′) have to capture the following propositions, which can be character-

ized as CNFs (see ̸↷??):

1. For every j ̸= i, γj = γ′j ;

2. Apply the transition function δ on q and γi will return q′, γ′i and i′ − i.

– The recursive case is to construct Φi from Φi−1, that is:

Φi(C,C
′) := ∃C ′′∀D1∀D2(D1 = C ∧D2 = C ′′) ∨ (D1 = C ′′ ∧D2 = C ′) → Φi−1(D1, D2)



Note that φ1 → φ2 is equivalent to ¬φ1 ∨ φ2.

– |Φi| = |Φi−1|+ p(S(n)) where p is a polynomial.

– We conclude that ΦO(S(n)) has poly(n) size, which means that TQBF is PSPACE-hard.

Exercise 2. For every Boolean function f : {0, 1}n → {0, 1}, show that there is an n-variable CNF
formula φf of size at most n2n such that φf (u) = f(u) for every u ∈ {0, 1}n.

Solution. Let φf :=
∧

v∈{0,1}n∧f(v)=0Cv(z1, . . . , zn), where for each v, Cv(v) = 0 and Cv(u) = 1 for
every u ̸= v. Hence, the constructed φf satisfies. ■


