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Inverse Desigh Examples

e Mechanical Parts: Maximize strength at minimal weight e Fluid Dynamics: Minimize drag (under various constraints)

e Heat Sinks: Maximize heat flow at minimal size and weight
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Challenge Il: Inverse Elastic Shape Optimization
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An Asymptotic Numerical Method for Inverse Elastic Shape Design


http://kunzhou.net/zjugaps/ANMdesign/

Challenge Il: Inverse Elastic Shape Optimization

e How can we simulate elastic objects? e We will look at:
o How can we model elastic deformation? o Continuum mechanics
o How can we discretize volumetric solids? o Finite element methods for tetrahedral meshes
o How can we find equilibrium states? o Newton-style methods for energy minimization
e How can we optimize elastic objects? e We will look at:
o How can we modify the rest shape? o Shape preservation
o How can we find the best modification? o Sensitivity analysis and the adjoint method for
o such that the object deforms into a given target inverse shape optimization

geometry under given external forces.



Inverse Design Objective

Reference Configuration Deformed Configuration

e Elasticity simulation:

¢* = argmin E|P] (\% ]
® ] !
E[(I)] = /Q\II(V(I)) dX + Frorces [(I)] \X) ‘ .

e Our goal: Find rest shape 2 such that deformed equilibrium shape matches desired
target under specified applied forces.



Inverse Design Objective

Discretize with FEM = finite vector of variables x stacking node positions x;:

X

x* = argmin F(x) E(x):=FE [Z xi¢i:|

For a discrete mesh, our goal is to find the vertex positions X; of the rest state such that
the mesh deforms into the target under the applied forces.

We are given a desired target state and external forces acing on the shape.

o We will use gravity and additional nodal forces, i.e. point loads.

We will prescribe target positions for each deformed boundary vertex x; of our mesh.

o Some vertices will be pinned, i.e. their target position is the same as the input configuration.



Inverse Designh Objective

e Can be captured in a design objective function

1
2

where xz denotes the target positions of the corresponding boundary vertices.

J(x,x}) =

% — 3 |*

input model, rest state deformed state under gravity optimized model, rest state deformed state under gravity



Optimal Design for Nonlinear Elasticity

Reference Configuration Deformed Configuration

e Suppose object is determined by design parameters p.

o |n our case, p will be the positions X; of the boundary vertices in the rest state. Other parameters such as
stiffness or other material model parameters could also be used.

o FEM load vector f can depend on p (e.g., if loads include self weight).

o Discretized total potential energy function now depends on p: E(x, p).



Optimal Design for Nonlinear Elasticity

e We want to optimize a generic performance metric J(x, p) that depends on the
equilibrium state:

s.t. x* = argmin E(x, p)
X

e Reduced approach: eliminate x* using equilibrium constraint = unconstrained
optimization:

min J(x*(p),p)  x"(p):= argmin E(x,p)
P N e’ X

J(p)



Optimal Design for Nonlinear Elasticity

min J(x*(p), p) x*(p) := argmin E(x, p)
P N e’ X

J(p)
e Evaluating the objective requires first solving the nonlinear equilibrium problem.

~

Nonlinear Design Optimization

e Must re-solve every time p updates
= nested optimization.

Nonlinear Optimization

for Equilibrium

Obijective Evaluation

Step Calculation




Interlude: Derivatives and Chain Rule

A MaATtHEMATICS BACKGROUND

Example WA Taylor series expansion for two variables

Consider the following function of two variables:

fx1,x2) = (1=x1)* + (1-x)* + % (21'2 -

Performing a Taylor series expansion about x = [0, =2], 1

f(x+a:p)=18+a:[—2 ‘14]p+%a:2pT |1Ci
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Optimal Design for Nonlinear Elasticity

min J(x*(p), p) x*(p) := argmin E(x, p)
P _/_/ X
J(p)
e Evaluating the objective requires first solving the nonlinear equilibrium problem.
e Determining a descent direction for J requires differentiating through the nonlinear
equilibrium solve. This can be done using the chain rule:

dJ  8J dx* L 07
dp; Ox dp;  Op

e Direct dependence on design parameters gj is generally easy to derive and evaluate.

However, ‘é’;, iIs more complicated.
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https://en.wikipedia.org/wiki/Chain_rule#Multivariable_case

Sensitivity Analysis

dJ  8J dx* | 8J <*(p) := argmin E(x. p)
dp; Ox dp; Op;’ )= Mg En P

e What nonlinear equation implicitly defines equilibrium function x*(p)?

e Optimality conditions:

g—f(X*(p),p) =0
e Obtain an equation for ‘?9’;: by differentiating w.r.t. p; using chain rule:
d OF , |, 0’FE dx* 0’E
dp; Ox (x*(p):p)= Ox? dp; + Ox0p; =0
. d :_[a2E]1 8°E
dp; Ox?2 Ox0Op;

References: Tutorial, Short Overview Article, Wikipedia
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https://en.wikipedia.org/wiki/Chain_rule#Multivariable_case
https://cs.stanford.edu/~ambrad/adjoint_tutorial.pdf
https://hal.archives-ouvertes.fr/hal-01242950/document
https://en.wikipedia.org/wiki/

Sensitivity Analysis

dJ 8J dx* 8J

— * -— . E
e Obtain an equation for ‘g’;: by differentiating w.r.t. p; using chain rule:
d OF , |, 0’FE dx* 0’E
(x*(p),p) = + =0

dp; Ox ox? dp;  O0xOp;
dx* _[82E]_1 0’E

— dp; - Ox2 0x0p;

e Note ‘?;f = H is same Hessian matrix used to solve for the Newton step Hd =

o Guaranteed to be positive definite at stable equilibrium = unique solution ‘31—’; exists.

o Backsolving for each p; will be expensive, though. How can we avoid this?

OF

- ox
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https://en.wikipedia.org/wiki/Chain_rule#Multivariable_case

Sensitivity Analysis

dJ  8J dx* L 07 dx*
dp; Ox dp;  Op;’ dp;

o gJ is a row vector, and thus so is ‘”H 1

e Define “adjoint state” y to be the vector such that

-
yT = 8JH N y:H—lT ﬂ
ox ox

e |n other words, y is the solution to the adjoint equation:

oJ\ '
T—_
Hy‘(m)
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Sensitivity Analysis

oJ\ '
T—_
Hy‘(w)

o For elasticity (and many other PDEs), H = ?9;1;7 is symmetric and thus the system matrix of the adjoint

equation is the same as the system matrix of the original state equation (equilibrium problem).

e Adjoint Equation

o After we solve this single equation, we can compute each gradient component with just
a dot product rather than a backsolve:

dJ  ; 8*E  dJ

dp; -y 0x0p; " 31%'.

Wikipedia: Adjoint State Method 16


https://en.wikipedia.org/wiki/Adjoint_state_method

Inverse Design Optimization

e Adjoint method allows us to efficiently calculate gradients for minimizing a function
depending on the result of a simulation.

dJ 1 9*E  4J

ap; ~ Y oxop; | om
oJ 0.

e Our target fitting objective J(x,x}) := 5 ||x; — x}||* means that 5= =

e Remaining Questions:

0’E -

o How do we compute Do -

o How do we initialize the design optimization?
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Automatic Differentiation

2
e How do we compute g{g) ?

e Depends on p;. In the homework we computed derivatives of a function evaluating the
dot product of g—f with “constant” y.

W\ __ OB 9 ( 9B N_ 0 o
dp - 8p8xy -~ Op Ox -~ Op y

e Can be efficiently evaluated using automatic differentiation.

o For example using Pylorch or Jax.
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https://pytorch.org/
https://github.com/google/jax

Initialization of Design Optimization

e Starting the inverse optimization of the rest state from initial design is far from optimum.

e Can we find a better initial state?

input model, rest state deformed state under gravity input model, inverse gravity deformed state under gravity
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Initialization of Design Optimization

e Use equilibrium state under inverse gravity as starting configuration of rest state
optimization!

input model, inverse gravity deformed state under gravity optimized model, rest state deformed state under gravity
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Challenge Il: Inverse Elastic Shape Optimization
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An Asymptotic Numerical Method for Inverse Elastic Shape Design
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http://kunzhou.net/zjugaps/ANMdesign/

Challenge Il: Inverse Elastic Shape Optimization

e How can we simulate elastic objects? e We looked at:
o How can we model elastic deformation? o Continuum mechanics
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Challenge Il: Inverse Elastic Shape Optimization

e How can we simulate elastic objects?

o How can we model elastic deformation?

o How can we discretize volumetric solids?

e We looked at:

o Continuum mechanics

o Finite element methods for tetrahedral meshes

E= /Q\IJ(V<I>) dX = Z\I! (V®|,)Vol(e)

Deformed Configuration
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Challenge Il: Inverse Elastic Shape Optimization

e How can we simulate elastic objects? e We looked at:
o How can we model elastic deformation? o Continuum mechanics
o How can we discretize volumetric solids? o Finite element methods for tetrahedral meshes
o How can we find equilibrium states? o Newton-style methods for energy minimization

le6

0.0. — Gradient Descent (1000its)

= BFGS (1000its)
— Newton-CG (45its)

—0.51

|
=
o

Energy [J]

-1.5

—2.04

—2.5

0 10 20 30 40 50
Computation time [s]

24



Challenge Il: Inverse Elastic Shape Optimization

e How can we simulate elastic objects? e We looked at:
o How can we model elastic deformation? o Continuum mechanics
o How can we discretize volumetric solids? o Finite element methods for tetrahedral meshes
o How can we find equilibrium states? o Newton-style methods for energy minimization
e How can we optimize elastic objects? e We looked at:
o How can we find the best modification? o Sensitivity analysis and the adjoint method

oJ\ '
T—_
Hy‘(w)

input model, rest state deformed state under gravity optimized model, rest state deformed state under gravity



Reading

ENGINEERI

Desion Op

Engineering Design Optimization. Chapter 6.7
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https://mdobook.github.io/

Outlook: Challenge Ill: Asymptotic Gridshell Example

Eike Schling

Geometry.Design.Structure

Asymptotic Envelope Substructure

By eikeschling / December 7, 2020 / Academia, Architecture, Research / Leave a comment
Type: BuildingEnvelope

Location: Hong Kong, Taipei

Year: 2020

Status: Completion Substructure

Office: The University of Hong Kong

In collaboration with: National Taiwan University of Science and Technology, Shen Guan Shih
Industry Partner: Gomore Building Envelope Technology, Sam Hsu

Project Team: Eike Schling, Jacky Chu, Muye Ma, Wesley She, Fai Lam Chung, Nuozi Chen
Lee Chun Kij, Yao Dongni, Choi Chung Hei, Chung Bing Tsun, Ma Chun Hon, Ng Sherene Poh Li, So Cheuk Lam, Wang Xiangning, Zhu
Xiang, Yang Mei, Chan Ching Yee

Together with the elective course ‘Structural Research’ at HKU we constructed a steel prototype for a doubly curved curtain wall module this

Source: Eike Schling
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https://eikeschling.com/
https://eikeschling.com/
https://eikeschling.com/author/eikeschling/
https://eikeschling.com/2020/12/07/asymptotic-envelope-substructure/
https://eikeschling.com/category/academia/
https://eikeschling.com/category/architecture/
https://eikeschling.com/category/research/
https://eikeschling.com/2020/12/07/asymptotic-envelope-substructure/

Outlook: Challenge Ill: Asymptotic Gridshell Example

Eike Schling

Geometry.Design.Structure

Canopy for the Hotel Intergroup in Ingolstadt

By eikeschling / December 3, 2019 / Architecture, Research / Leave a comment
Type: Canopy

Location: Ingolstadt, Germany

Year: 2019

Status: completed

Planning Team: Eike Schling, Jonas Schikore

Partner: Brandl Metallbau, Eitensheim (https:/ /www.brandl-eitensheim.de /metallbau/)

The Asymptotic Canopy draws attention to the main entrance to the Intergroup Business and Design Hotel, Ingolstadt. The stainless steel
structure is composed of four symmetrical pods of strained lamella gridshells spanning between rigid steel frames. The structure creates a
central ornamental portal and two side wings within the semi courtyard in front of the main entrance. The steel structure is covered with a
membrane roof, which is tensioned by an elastic steel arch.

The gridshell was designed digitally, following the asymptotic curves on the negatively curved design surface. This allowed for the simple

Source: Eike Schling
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https://eikeschling.com/
https://eikeschling.com/
https://eikeschling.com/author/eikeschling/
https://eikeschling.com/2019/12/03/update-canopy-for-the-hotel-intergroup-in-ingolstadt/
https://eikeschling.com/category/architecture/
https://eikeschling.com/category/research/
https://www.brandl-eitensheim.de/metallbau/
https://www.brandl-eitensheim.de/metallbau/
https://eikeschling.com/2019/12/03/update-canopy-for-the-hotel-intergroup-in-ingolstadt/

Monday!
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Kinetic Grid Structures

Event details

Date 11.11.2024
Hour 12:00>13:00
Speaker Eike Schling
Location ©GCB110
J Online
Category Conferences - Seminars

Event Language English

https:/memento.epfl.ch/event/kinetic-grid-structures/
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