CS457 Geometric Computing

5A - Elastic Shape Optimization

Mark Pauly

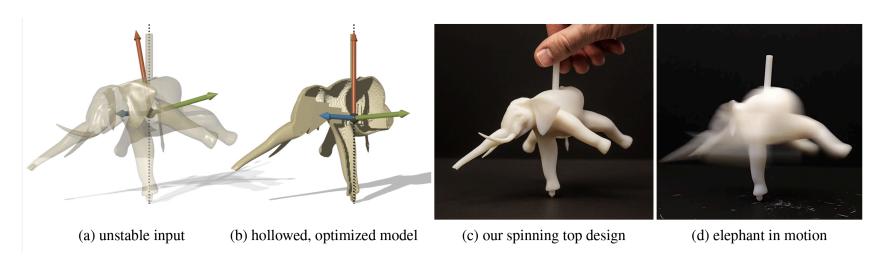
Geometric Computing Laboratory - EPFL

Challenge I: Make it stand

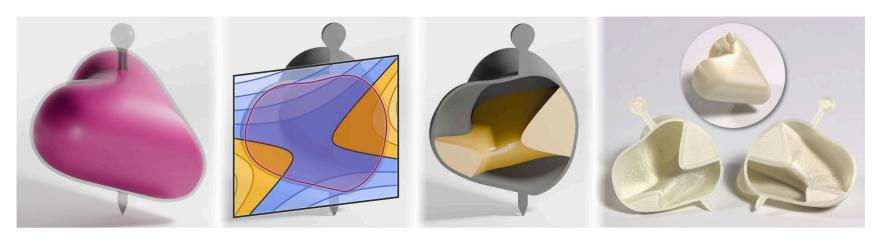
- Given some (digital) geometric object, how can we determine if it stands?
- If it does not stand, how can we optimize its shape, so that it does?

Make It Stand: Balancing Shapes for 3D Fabrication, ACM SIGGRAPH 2013

Make it spin

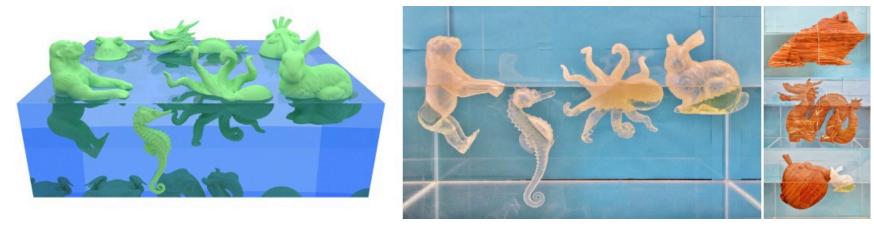


Spin-It: Optimizing Moment of Inertia for Spinnable Objects, ACM SIGGRAPH 2014



Spin-It Faster: Quadrics Solve All Topology Optimization Problems That Depend Only On Mass Moments, ACM SIGGRAPH 2024

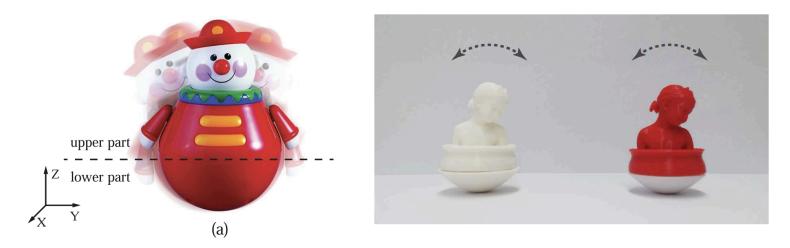
Make it swim



Buoyancy Optimization for Computational Fabrication, Eurographics 2016

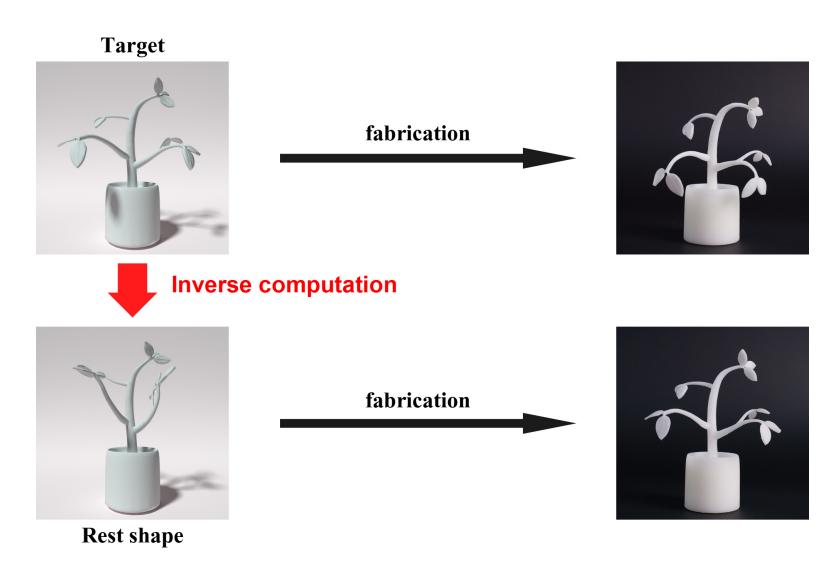
Make it swing

Figure 1: A goblet shape roly-poly toy example designed by our method. The snapshots show that the toy is able to regain balance when pushed over.



Make it swing: Fabricating personalized roly-poly toys, Computer Aided Geometric Design 2016

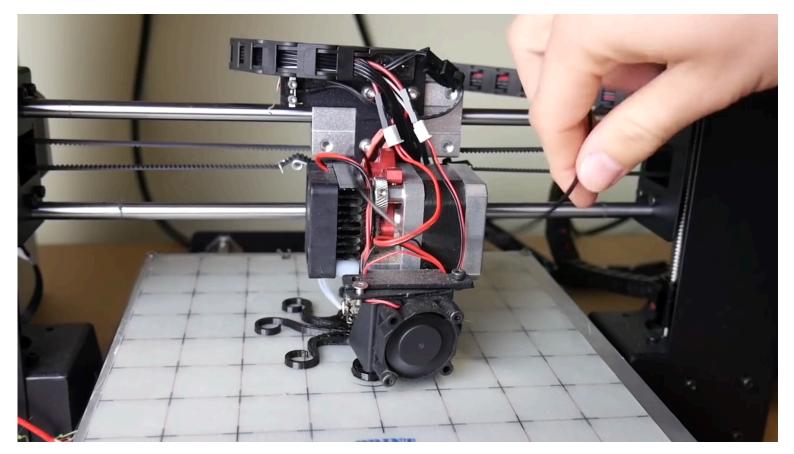
Challenge II: Inverse Elastic Shape Optimization



An Asymptotic Numerical Method for Inverse Elastic Shape Design

Motivation

• 3D printing or casting can create very flexible objects!



Maker's Muse - Youtube

Motivation

• 3D printing or **casting** can create very flexible objects!

Smooth-On - Youtube

Motivation

• 3D printing or casting can create very flexible objects!

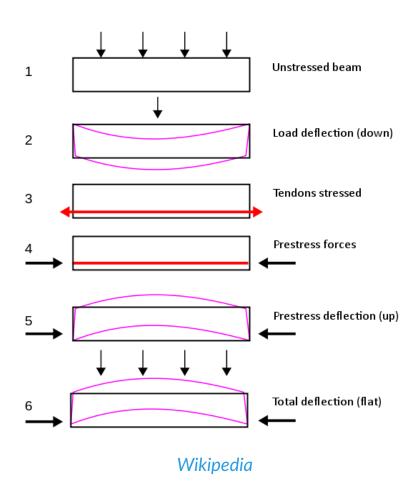
- Such objects (but really, any objects) deform under external forces (e.g gravity).
- How can we design objects that take this deformation into account?
 - How can we modify designs such that under given external forces it deforms into the desired target state?

Challenge II: Inverse Elastic Shape Optimization

- How can we simulate elastic objects?
 - How can we model elastic deformation?
 - How can we discretize volumetric solids?
 - How can we find equilibrium states?
- How can we optimize elastic objects?
 - How can we modify the rest shape?
 - How can we find the best modification?
 - such that the object deforms into a given target geometry under given external forces.

- We will look at:
 - Continuum mechanics
 - Finite element methods for tetrahedral meshes
 - Newton-style methods for energy minimization
- We will look at:
 - Shape preservation
 - Sensitivity analysis and the adjoint method for inverse shape optimization

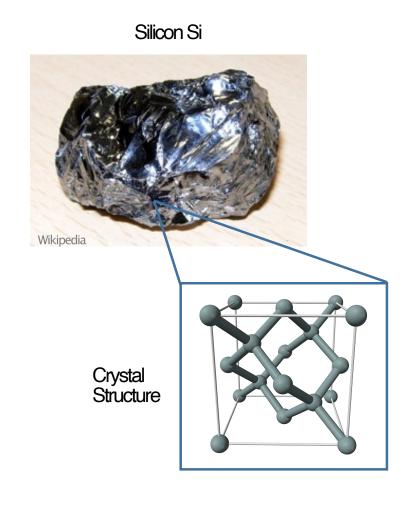
Aside: Prestressed Concrete

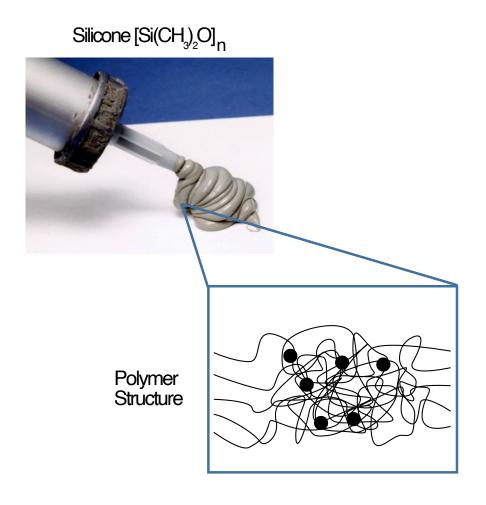


Source

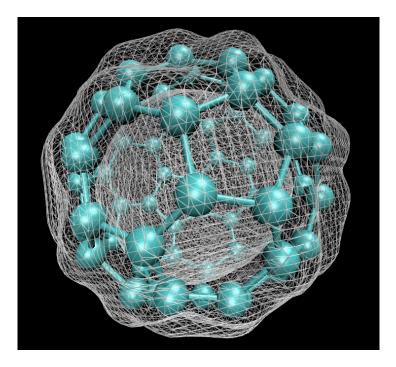
Origins of Elasticity

• All solids are elastic to some degree (depending on internal structure).

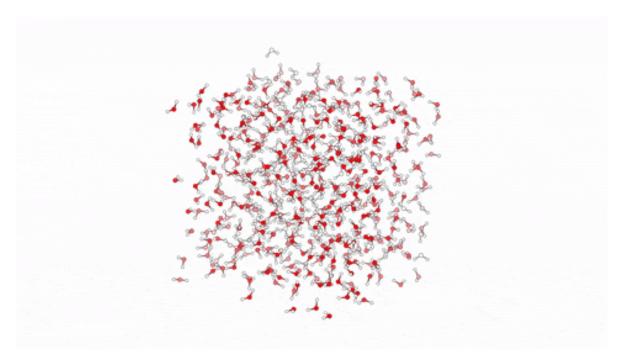




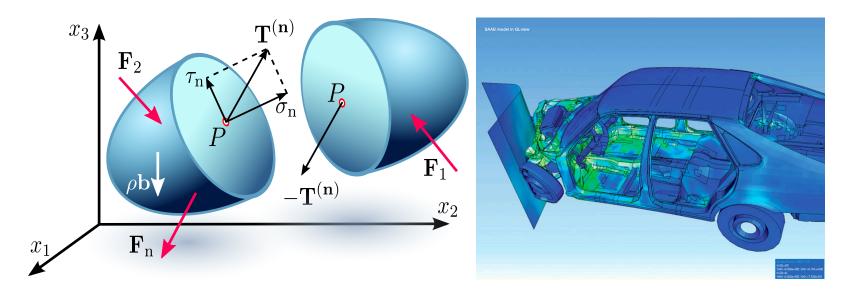
• Å-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)



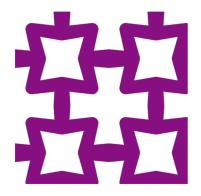
- Å-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)
- nm-scale: Molecular Dynamics (empirical interatomic potentials)

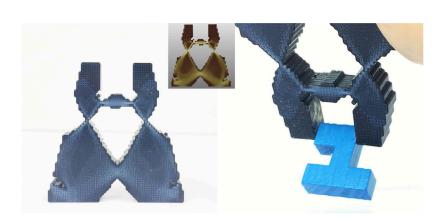


- Å-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)
- nm-scale: Molecular Dynamics (empirical interatomic potentials)
- mm-scale+: Continuum Mechanics Models (partial differential equations)



- Å-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)
- nm-scale: Molecular Dynamics (empirical interatomic potentials)
- mm-scale+: Continuum Mechanics Models (partial differential equations)
- large scales: Homogenized Elasticity Models

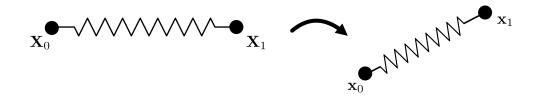




- Å-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)
- nm-scale: Molecular Dynamics (empirical interatomic potentials)
- mm-scale+: Continuum Mechanics Models (partial differential equations)
- large scales: Homogenized Elasticity Models

We will focus on continuum mechanics models.

Linear Springs (Hooke's Law) in nD



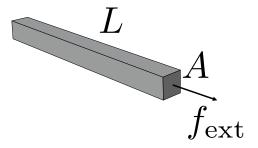
Express a spring's energy in terms of undeformed/deformed points

$$E_{ ext{spring}} = rac{1}{2} kig(\|\mathbf{x}_1 - \mathbf{x}_0\| - \|\mathbf{X}_1 - \mathbf{X}_0\|ig)^2$$

• Force on point x_1 applied by spring points along spring axis

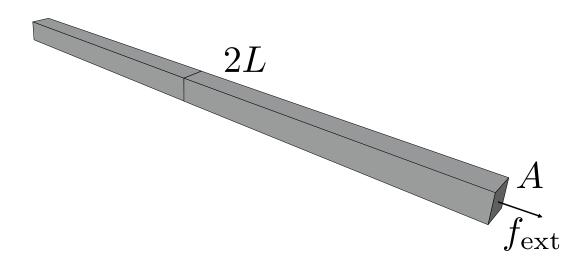
$$-rac{\partial E_{\mathsf{spring}}}{\partial \mathbf{x}_1} = kig(\|\mathbf{x}_1 - \mathbf{x}_0\| - \|\mathbf{X}_1 - \mathbf{X}_0\|ig)rac{\mathbf{x}_0 - \mathbf{x}_1}{\|\mathbf{x}_0 - \mathbf{x}_1\|}$$

• Consider a rectangular elastic rod with rest length L, area A and spring constant k:



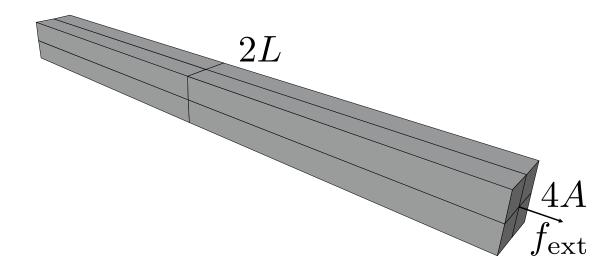
ullet According to Hooke's law, it changes length by $\Delta L = rac{f_{ ext{ext}}}{k}$

What happens when we glue it to an identical copy?



- Both rods change length by $\Delta L \Longrightarrow$ total length change is $2\Delta L$.
- Spring constant changes to $\tilde{k} = \frac{f_{\text{ext}}}{2\Delta L} = \frac{1}{2} \frac{f_{\text{ext}}}{\Delta L} = \frac{1}{2} k$.

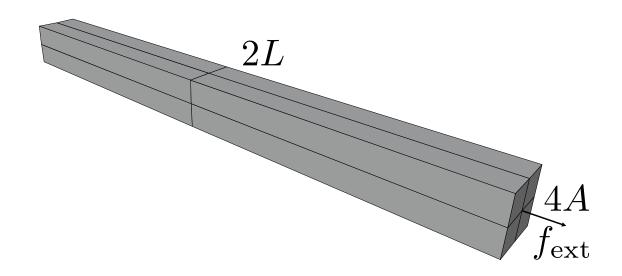
• Now let's glue together 4 copies of the lengthened rod:



ullet Our force is spread across all 4 copies \Longrightarrow only $f_{
m ext}/4$ acts on each.

$$f_{ ext{ext}}/4 = ilde{k}\Delta L \quad \Longrightarrow \quad f_{ ext{ext}} = 4 ilde{k}\Delta L = \hat{k}\Delta L$$

ullet Spring constant changes to $\hat{k}=4 ilde{k}.$



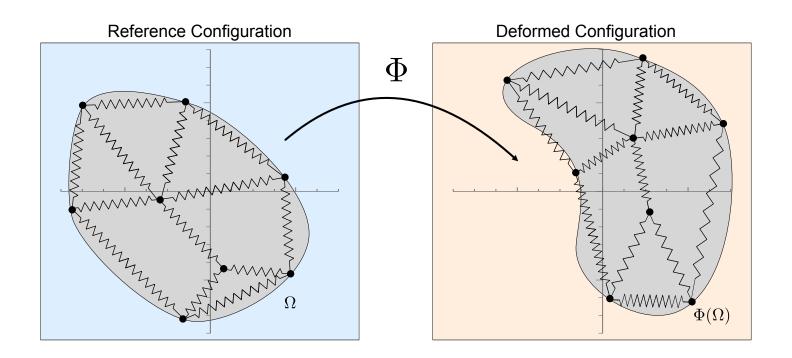
- ullet Spring constant k confounds material properties with geometry.
 - \circ Scaling length by s divides k by s.
 - \circ Scaling cross-section area by s multiplies k by s.
 - \circ Idea: use $Y = \frac{Lk}{A}$ as a geometry-independent measure of stiffness.

Young's modulus, Stress and Strain

- ullet This material parameter "Y" (often denoted "E") is called the Young's modulus
 - Force per unit area (typical units: Pascals, Megapascals, Gigapascals)
 - Can recover spring stiffness by $k = \frac{YA}{L}$.
 - Better yet: work with
 - \circ strain $\varepsilon := \Delta L/L$ (relative length change) instead of absolute length change
 - \circ stress $\sigma := f_{\rm ext}/A$ (applied force per unit area) instead of total force.
 - ∘ Then Hooke's law in 1D is just:

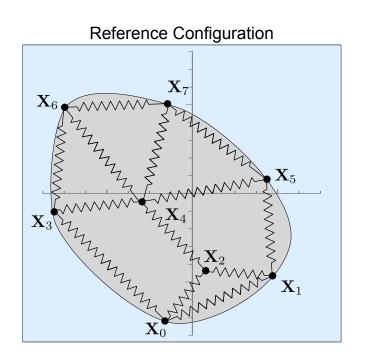
$$\sigma = Y arepsilon$$

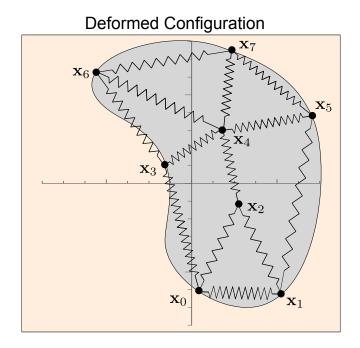
Recall: Spring Networks



- Rudimentary spring-based deformable object model:
 - \circ Sample a set of points \mathbf{X}_i and connect them with springs.
 - Now our deformed configuration is described by $\mathbf{x}_i = \Phi(\mathbf{X}_i)$. (Simulation problem is now optimizing a set of position variables.)

Spring System Energy



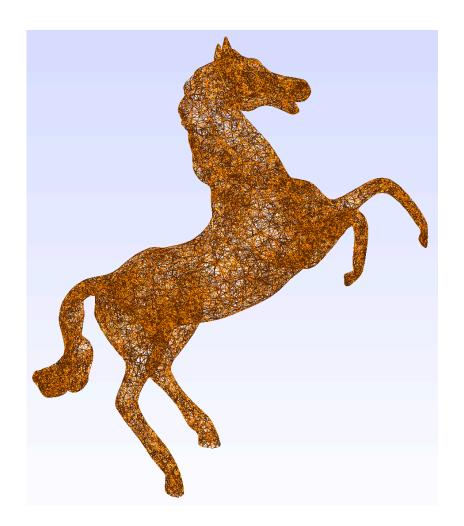


• Full elastic energy of spring system: just sum them up!

$$E_{ ext{elastic}}(\mathbf{x},\mathbf{X}) = \sum_{e_{ij}} rac{1}{2} k_{ij} ig(\|\mathbf{x}_i - \mathbf{x}_j\| - \|\mathbf{X}_i - \mathbf{X}_j\| ig)^2$$

Spring Simulation Cons

- Behavior is extremely mesh dependent!
- Unclear what arrangement of springs will properly model bending/shearing.
- Alternative (coming up): a continuum-mechanicsbased simulation.
 - \circ Define elastic potential energy stored by arbitrary Φ
 - Define strain and stress for 2D/3D objects.
 - \circ Discretize the function space Φ lives in (Finite Element Method)



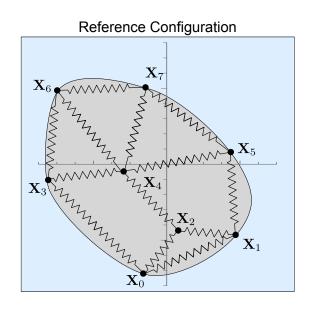
CS457 Geometric Computing

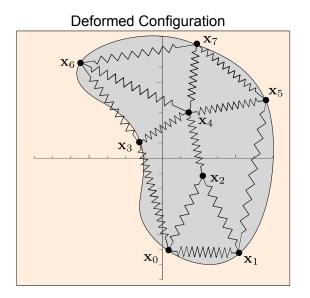
5B - Solid Mechanics I

Mark Pauly

Geometric Computing Laboratory - EPFL

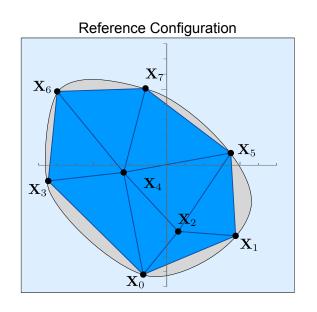
Continuum Mechanics

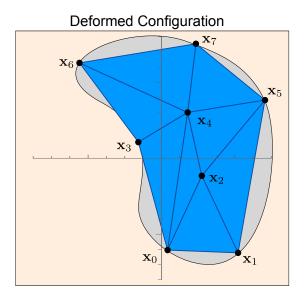




• Ultimately, we will replace 1D "edge springs"...

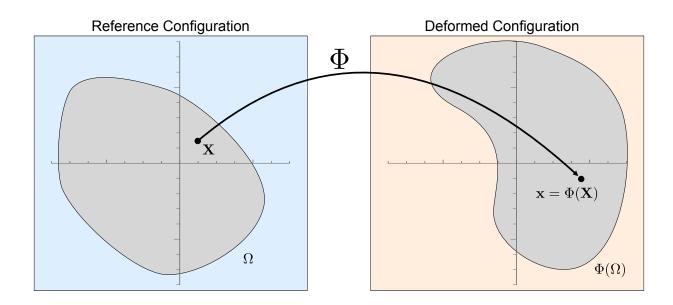
Continuum Mechanics





- Ultimately, we will replace 1D "edge springs" with 2D "triangle springs" and 3D "tetrahedron springs."
- How do we ensure these "springs" are physically accurate/not badly mesh-dependent? Derive stiffnesses by discretizing a continuum mechanics model.

Continuum Mechanics



- We will study continuum mechanics models of the elastic energy stored in a volumetric solid due to an arbitrary deformation Φ .
- We will consider *hyperelastic* energies where the energy is purely a function of Φ (ignoring past state; path independent).
 - \circ Energy returns to zero when the deformation returns to the identity map $\Phi(\mathbf{X}) = \mathbf{X}$.
 - Good approximation for the fabrication applications we care about.
 - Rules out *plastic* (irreversible) deformation-but these can be handled by updating the rest state.

Hyperelastic vs Non-Hyperelastic

Example of **Hyperelastic** Material: Silicone

Hyperelastic vs Non-Hyperelastic

A material point method for snow simulation

Alexey Stomakhin Craig Schroeder Lawrence Chai Joseph Teran Andrew Selle

University of California - Los Angeles Walt Disney Animation Studios

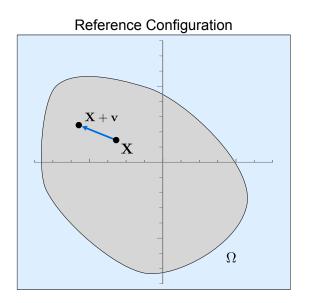
(contains audio)

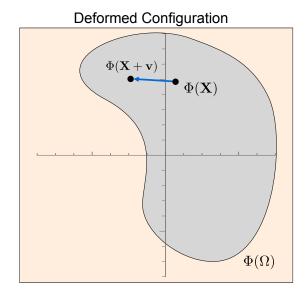
Professor Teran UC Davis Math

SIGGRAPH 2013 ©Disney

Example of non-Hyperelastic Material: Snow. A material point method for snow simulation

Distortions Induced by Φ



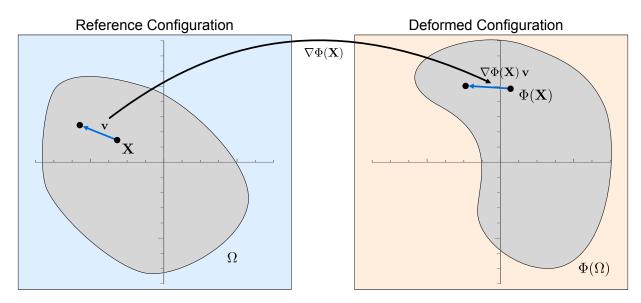


- Let's study how the mapping distorts small oriented "fibers" of the material.
 - \circ Consider an infinitesimal vector \mathbf{v} ($||\mathbf{v}|| \ll 1$) connecting material points \mathbf{X} and $\mathbf{X} + \mathbf{v}$ in rest config.
 - After deforming by Φ , this vector \mathbf{v} is distorted into $\Phi(\mathbf{X} + \mathbf{v}) \Phi(\mathbf{X})$.
 - \circ From a Taylor expansion around **X**, we see **v** is distorted into:

$$\left(\Phi(\mathbf{X}) +
abla \Phi(\mathbf{X})\mathbf{v} + O(\parallel \mathbf{v} \parallel^2) \right) - \Phi(\mathbf{X}) pprox
abla \Phi(\mathbf{X})\mathbf{v}.$$

• This relationship $\mathbf{v} \mapsto \nabla \Phi(\mathbf{X}) \mathbf{v}$ holds for arbitrary infinitesimal vectors \mathbf{v} .

Deformation Gradient



- Distortion is captured by $F := \nabla \Phi(\mathbf{X})$, the deformation gradient (Jacobian) of Φ .
- Elastic energy per unit volume can be formulated as an energy density function $\Psi(\nabla\Phi)$.
 - $\Psi: \mathbb{R}^{n \times n} \to \mathbb{R}$ (scalar-valued function of a matrix) encodes the material's elastic properties.
 - \circ Ψ can optionally vary from point to point to model heterogeneous materials (i.e., $\Psi(\nabla\Phi(\mathbf{X}),\mathbf{X})$).
 - \circ We'll see later that Ψ must satisfy certain properties to make sense as a material model.

Elastic Energy and Forces

- Deformation gradient $\nabla \Phi(\mathbf{X})$, energy density function $\Psi(\nabla \Phi)$.
- The full elastic energy in the object is the integral of the energy density:

$$oxed{E_{\mathsf{elastic}}[\Phi] := \int_{\Omega}\! \Psi(
abla \Phi)\,\mathrm{d}\mathbf{X}.}$$

Compare to:

 $\overline{E_{ ext{spring}}(\mathbf{x},\mathbf{X}) = \sum_{e_{ij}} rac{1}{2} k_{ij} ig(\|\mathbf{x}_i - \mathbf{x}_j\| - \|\mathbf{X}_i - \mathbf{X}_j\| ig)^2}$

• 'Simple' formula for directional derivative along perturbation (displacement) $\delta\Phi$:

$$\left\langle rac{\partial E_{ ext{elastic}}}{\partial \Phi}, \delta \Phi
ight
angle := rac{ ext{d}}{ ext{d} h} igg|_{h=0} \int_{\Omega} \! \Psi \Big(
abla (\Phi + h \delta \Phi) \Big) \, \mathrm{d} \mathbf{X} = igg[\int_{\Omega} \! \Psi'(
abla \Phi) :
abla (\delta \Phi) \, \mathrm{d} \mathbf{X},$$

• The matrix Ψ' is the derivative of Ψ with respect to its matrix argument:

$$[\Psi']_{ij} := rac{\partial \Psi(F)}{\partial F_{ij}} \quad \Longrightarrow \quad \Psi' : \delta F = \sum_{i,j} rac{\partial \Psi(F)}{\partial F_{ij}} [\delta F]_{ij}.$$

Aside

Double Dot Products

The double dot product of two matrices produces a scalar result. It is written in matrix notation as **A** : **B**. Once again, its calculation is best explained with tensor notation.

$$\mathbf{A}:\mathbf{B}=A_{ij}B_{ij}$$

Since the i and j subscripts appear in both factors, they are both summed to give

$$egin{array}{lll} {f A}: {f B} &=& A_{ij} B_{ij} &=& A_{11}*B_{11} &+& A_{12}*B_{12} &+& A_{13}*B_{13} &+ \ && A_{21}*B_{21} &+& A_{22}*B_{22} &+& A_{23}*B_{23} &+ \ && A_{31}*B_{31} &+& A_{32}*B_{32} &+& A_{33}*B_{33} \end{array}$$

Double Dot Product Example

If
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 2 & 2 \\ 2 & 3 & 4 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$ then

Tensor Notation Basics

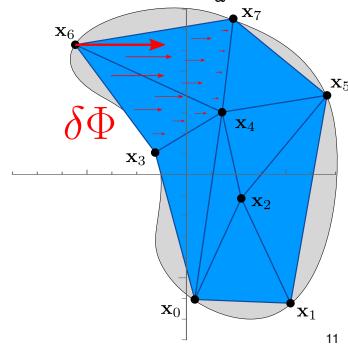
Elastic Energy and Forces

$$E_{ ext{elastic}}[\Phi] = \int_{\Omega} \Psi(
abla \Phi) \, \mathrm{d}\mathbf{X}, \ \left\langle rac{\partial E_{ ext{elastic}}}{\partial \Phi}[\Phi], \delta \Phi
ight
angle = \int_{\Omega} \Psi'(
abla \Phi) \, \mathrm{d}\mathbf{X}.$$

- Physical interpretations: (negative) work done by elastic forces over displacement $\delta\Phi$.
- In our computations, Φ is controlled by a finite set of deformation variables x_a .
- Changing x_a induces perturbation $\delta\Phi_a$, allowing us to compute components of the gradient:

$$rac{\partial E_{ ext{elastic}}}{\partial x_a} = \left\langle rac{\partial E_{ ext{elastic}}}{\partial \Phi}, \delta \Phi_a
ight
angle$$

whose negation gives "elastic force" on variable x_a .



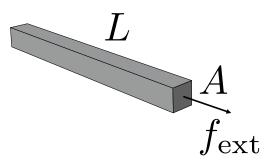
Remaining Questions

$$E_{ ext{elastic}}[\Phi] = \int_{\Omega} \Psi(
abla \Phi) \, \mathrm{d}\mathbf{X}, \ \left\langle rac{\partial E_{ ext{elastic}}}{\partial \Phi}[\Phi], \delta \Phi
ight
angle = \int_{\Omega} \Psi'(
abla \Phi) \, \mathrm{d}\mathbf{X}.$$

- These formulas are powerful and "simple" (assuming comfort with tensors) but abstract.
 - \circ How do we define $\Psi(F)$ to model a specific material?
 - How do we analyze the resulting deformation (will the object break?)
 - How to do all of this on a computer?
- To answer the first two, we will study the stress and strain occurring in our object.
- For computations, we will use the *finite element method* (FEM), discretizing the function space Φ lives in.

Strain and Stress

Recall 1D Bar:



- We recommended working with the "geometry-invariant" properties:
 - \circ strain $\varepsilon := \Delta L/L$ (relative length change) instead of absolute length change
 - \circ stress $\sigma := f_{\mathrm{ext}}/A$ (applied force per unit area) instead of total force.
- Then Hooke's law (linear material) in 1D is just:

$$\sigma=Yarepsilon,\quad ext{energy density}\ \Psi=rac{1}{2}arepsilon\sigma=rac{1}{2}Yarepsilon^2.$$

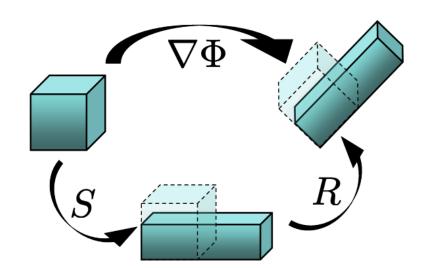
• How do we generalize this to *n* dimensions?

Can we just use $\nabla \Phi$ for strain?

- Measuring distortion using the deformation gradient $\nabla \Phi$ has one main issue:
 - It is sensitive to rotation of material, which does not store or release elastic energy.
- To factor out rotation, we can use the polar decomposition:

$$\nabla \Phi = RS$$
,

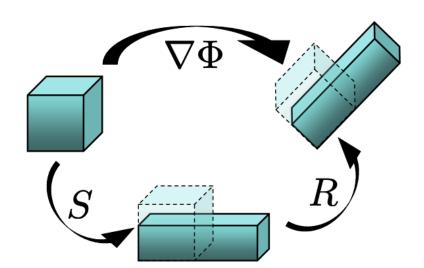
- *S* is a *symmetric matrix* representing pure stretching/compression along orthogonal axes.
- *R* is a rotation matrix.
- Always guaranteed to exist; is unique when $\nabla\Phi$ is nonsingular.



- Measuring distortion using the deformation gradient $\nabla \Phi$ has one main issue:
 - It is sensitive to rotation of material, which does not store or release elastic energy.
- To factor out rotation, we can use the *polar decomposition*:

$$\nabla \Phi = RS$$
,

- Now S = I if and only if the material purely rotates.
- Biot strain $\varepsilon_{\mathrm{Biot}} := S I$ is truly a measure of how much the material has distorted.
- Computing and differentiating the polar decomposition can be inconvenient, so Biot strain is not commonly used.



Notice that we can compute the (rotation-invariant)
 squared length of a deformed material fiber as:

$$\|
abla \Phi \mathbf{v}\|^2 = \mathbf{v}^ op (
abla \Phi)^ op
abla \Phi \mathbf{v}.$$



• The *change* in squared length is thus:

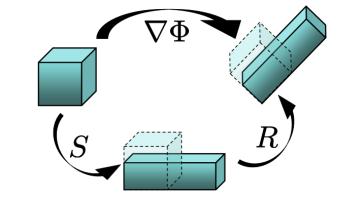
$$\|
abla \Phi \mathbf{v}\|^2 - \|\mathbf{v}\|^2 \ = \ \mathbf{v}^ op (
abla \Phi)^ op
abla \Phi \mathbf{v} - \mathbf{v}^ op \mathbf{v} \ = \ \mathbf{v}^ op \Big((
abla \Phi)^ op
abla \Phi - I \Big) \mathbf{v}.$$

• This motivates the use of *Green-Lagrange strain*:

$$arepsilon_{\mathsf{Green}} := rac{1}{2} \Big((
abla \Phi)^ op
abla \Phi - I \Big).$$

- $\circ \ arepsilon_{\mathsf{Green}}$ is rotation invariant since $(
 abla\Phi)^{ op}
 abla\Phi = (RS)^{ op}RS = SR^{ op}RS = S^2$.
- Very popular due to its mathematical simplicity: no polar decomposition needed.

- ullet Polar decomposition $abla\Phi=RS$
- Intuitive but somewhat difficult to compute measure: $\varepsilon_{\mathrm{Biot}} = S I$.



• Convenient, popular strain measure:

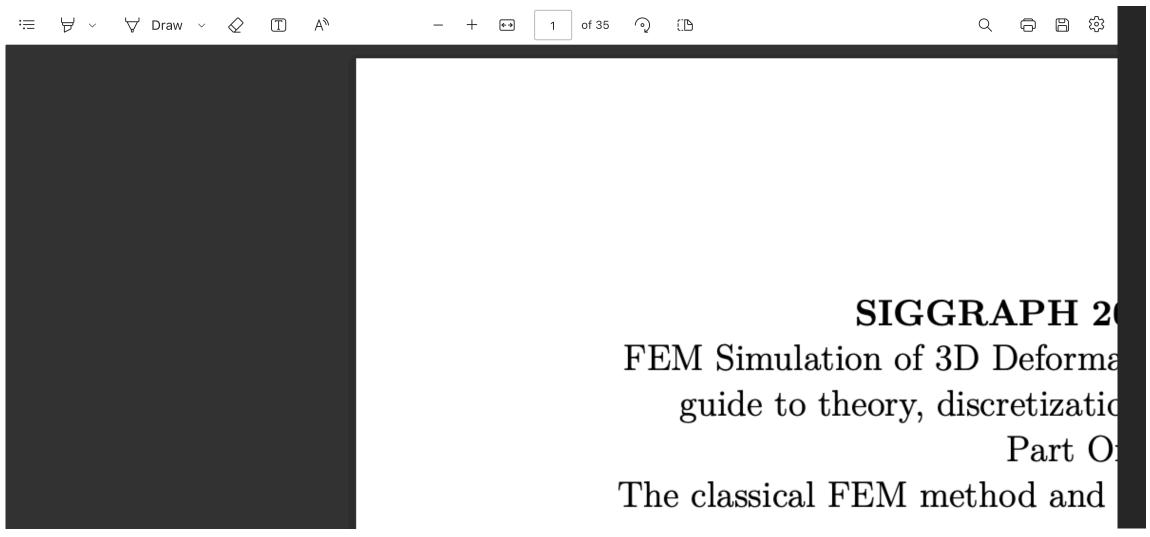
$$arepsilon_{\mathsf{Green}} := rac{1}{2} \Big((
abla \Phi)^ op
abla \Phi - I \Big).$$

- Many more strain measures have been used: Hencky Strain, Almansi Strain, ...
- All of these are equivalent at small strains (and will linearize to Cauchy strain tensor when we study linear elasticity)!

$$arepsilon_{\mathsf{Green}} = rac{1}{2}(S^2 - I) = rac{1}{2}ig((arepsilon_{\mathsf{Biot}} + I)^2 - Iig) = arepsilon_{\mathsf{Biot}} + rac{1}{2}arepsilon_{\mathsf{Biot}}^2$$

- We can easily ensure energy density Ψ depends on pure deformation (not rotation), $\Psi(\nabla\Phi)=\Psi(RS)=\Psi(S)$ by defining Ψ in terms of strain!
 - \circ This rotational invariance is needed for Ψ to make physical sense.

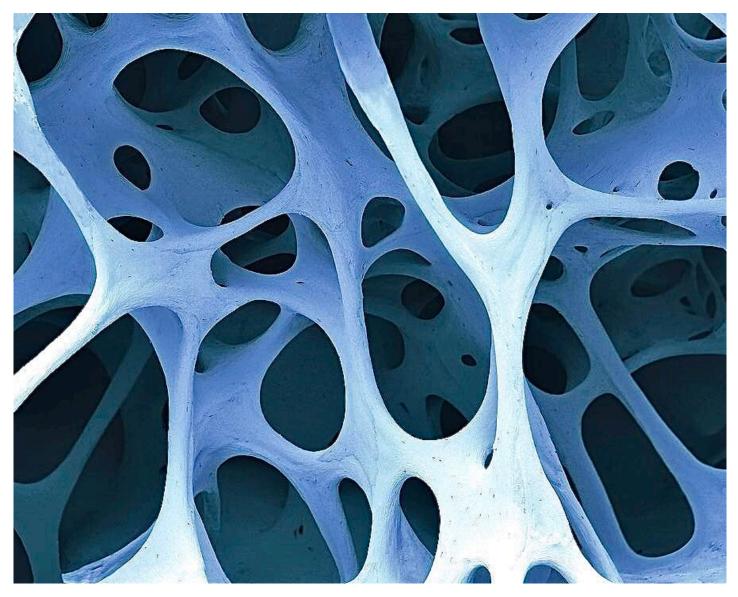
Reading



Siggraph 2012 Course Notes - femdefo.org

• More background: Bonet, Javier, and Richard D. Wood. *Nonlinear Continuum Mechanics for Finite Element Analysis*. 2nd ed., Cambridge University Press, 2008.

Optimal Structures: Bird Bone



Source

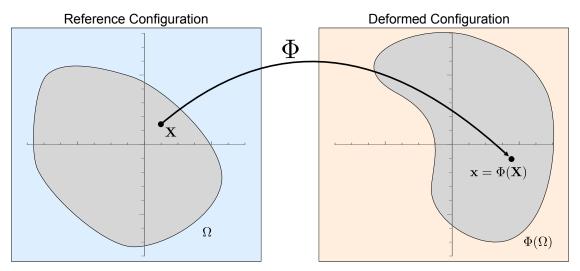
CS457 Geometric Computing

5C - Solid Mechanics II

Mark Pauly

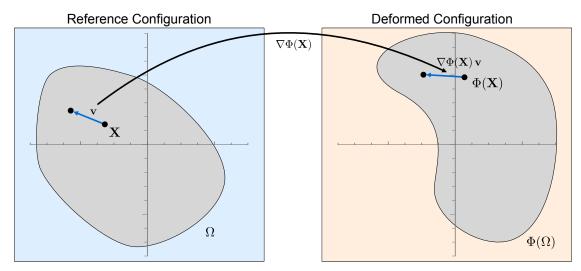
Geometric Computing Laboratory - EPFL

Recap: Deformation Gradient and Elastic Energy



• $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ defines deformation of a solid.

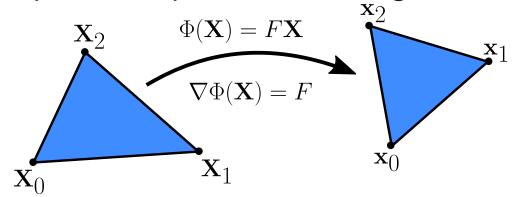
Recap: Deformation Gradient and Elastic Energy



- $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ defines deformation of a solid.
- $\nabla \Phi(\mathbf{X})$ is the Jacobian of Φ , $\frac{\partial \Phi_i}{\partial \mathbf{X}_i}$.
 - Encodes how short fibers oriented in any direction at **X** get distorted.
 - \circ Usually called the **deformation gradient** and given the label F.
- ullet Hyperelastic material model: elastic energy density function $\Psi(F)$
 - Function mapping 3×3 matrices to scalars, $\Psi : \mathbb{R}^{3 \times 3} \to \mathbb{R}$.
 - \circ Measures the energy stored in the material due the stretching caused by F.
- ullet Elastic energy $E_{ ext{elastic}}[\Phi] := \int_{\Omega} \! \Psi(
 abla \Phi) \, \mathrm{d} \mathbf{X}$

Recap: Strain

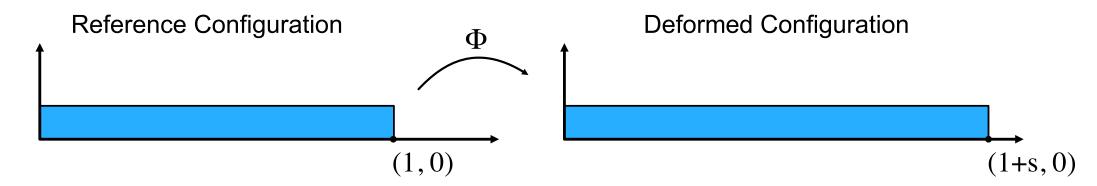
- How much is material stretched/compressed by a deformation gradient F?
- Example: linearly deformed triangle



- Material stretch/compression is unaffected by rotating the triangle.
- \circ Deformations $\Phi(\mathbf{X}) = F\mathbf{X}$ and $\tilde{\Phi}(\mathbf{X}) = RF\mathbf{X}$ apply the same distortion.
- \circ When F = R, the deformation is (locally) pure rotation, causing no stretch.
- Strain tensors give us a measure of distortion that factors out this rotation.
 - \circ Biot strain: $arepsilon_{\mathsf{Biot}} := S I$ where S is from the **polar decomposition** F = RS
 - \circ Green strain $arepsilon_{\mathsf{Green}} := rac{1}{2} \Big((
 abla \Phi)^ op
 abla \Phi I \Big) = rac{1}{2} ig(S^2 I ig)$
 - Strain tensor is zero if and only if the material transforms rigidly.

Elastic energy density Ψ will measure the "magnitude" of ε !

Simple 2D Strain Example



2D bar has been stretched horizontally by the constant strain deformation:

$$\Phi(\mathbf{X}) = egin{bmatrix} 1+s & 0 \ 0 & 1 \end{bmatrix} \mathbf{X}$$

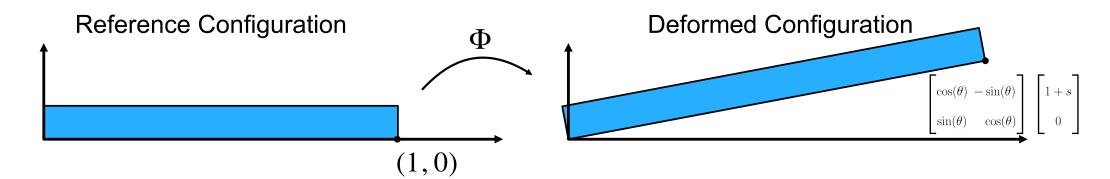
• Deformation gradient is just the constant matrix:

$$abla \Phi(\mathbf{X}) = egin{bmatrix} 1+s & 0 \ 0 & 1 \end{bmatrix} \quad frac{ ext{polar decomposition}}{ ext{}} \quad
abla \Phi(\mathbf{X}) = RS \; ext{with} \; R = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \; S = egin{bmatrix} 1+s & 0 \ 0 & 1 \end{bmatrix}$$

• Strain measures agree to first order in s (and $[\varepsilon_{\mathrm{Biot}}]_{00}$ matches 1D strain definition):

$$arepsilon_{\mathsf{Biot}} = S - I = egin{bmatrix} s & 0 \ 0 & 0 \end{bmatrix}, \quad arepsilon_{\mathsf{Green}} = rac{1}{2}(S^2 - I) = rac{1}{2}igg(egin{bmatrix} (1+s)^2 - 1 & 0 \ 0 & 0 \end{bmatrix}igg) = egin{bmatrix} s + rac{s^2}{2} & 0 \ 0 & 0 \end{bmatrix}.$$

Simple 2D Strain Example



• 2D bar has been deformed by the *constant strain* map:

$$\Phi(\mathbf{X}) = egin{bmatrix} \cos(heta) & -\sin(heta) \ \sin(heta) & \cos(heta) \end{bmatrix} egin{bmatrix} 1+s & 0 \ 0 & 1 \end{bmatrix} \mathbf{X}$$

• Deformation gradient is just the constant matrix:

$$\nabla \Phi(\mathbf{X}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1+s & 0 \\ 0 & 1 \end{bmatrix} \quad \xrightarrow{\text{polar decomposition}} \quad \nabla \Phi(\mathbf{X}) = RS \text{ with } R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}, \ S = \begin{bmatrix} 1+s & 0 \\ 0 & 1 \end{bmatrix}$$

• Strain measures agree to first order in s (and $[\varepsilon_{\text{Biot}}]_{00}$ matches 1D strain definition):

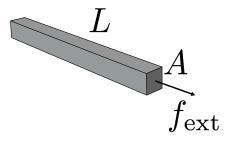
$$arepsilon_{\mathsf{Biot}} = S - I = egin{bmatrix} s & 0 \ 0 & 0 \end{bmatrix}, \quad arepsilon_{\mathsf{Green}} = rac{1}{2}(S^2 - I) = rac{1}{2}igg(egin{bmatrix} (1+s)^2 - 1 & 0 \ 0 & 0 \end{bmatrix}igg) = egin{bmatrix} s + rac{s^2}{2} & 0 \ 0 & 0 \end{bmatrix}.$$

Stress Measures

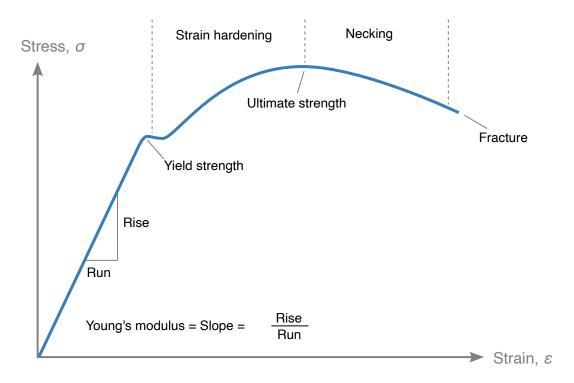
- When material is stretched by a strain ε , it responds with elastic restoring forces.
 - For beams, it was convenient to look at the restoring force per unit area
 - \circ Stress $\sigma := f_{\mathsf{ext}}/A$
 - Hooke's law in 1D:

$$\sigma = Y \varepsilon$$
,

valid for small strains.



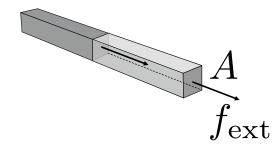
- Stresses are important because they tell us when an object will break.
 - \circ This concept is not actually needed to define a hyperelastic material model Ψ .
 - The elastic energy density in a beam is $\frac{1}{2}Y\varepsilon^2$.
- How do we define stress for 3D solids?



Young's modulus is the initial stress/strain slope

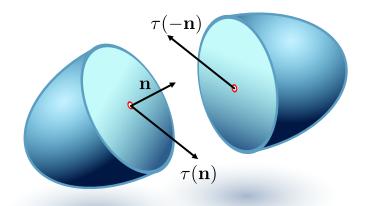
Stress in Beams

- Recall 1D Bar
 - \circ Suppose we clamp the "back" and pull on the "front" with stress $\sigma := f_{\rm ext}/A$ (applied force per unit area)



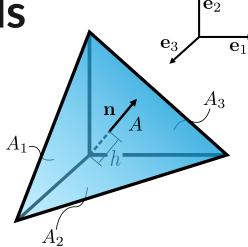
- Inside the bar at equilibrium, we have analogous forces
 - Material on one side of each slicing plane pulls on material on the opposite side.
 - In equilibrium, every orthogonal slicing plane experiences the same force over the same area.
 - We say this is a state of constant stress σ .
- Stress is a scalar quantity here since we consider only 1D (axial) forces that act on material planes with a single orientation (perpendicular to axis).

- How does this generalize to 3D solids?
 - Arbitrary slicing plane orientation n
 - \circ Arbitrary force-per-unit-area ("traction") vector $\tau(\mathbf{n})$ acting on this face.



- $\tau(\mathbf{n})$ is some function of \mathbf{n} . What form must it take?
 - By Newton's third law $\tau(-\mathbf{n}) = -\tau(\mathbf{n})$.
 - Can we say more? Yes, much more!

• Let's calculate $\tau(\mathbf{n})$ at a point in the material by considering this special tiny tetrahedron:



Net force acting on tetrahedron: sum forces acting on each face.

$$\mathbf{f} = \tau(\mathbf{n})A + \tau(-\mathbf{e}_1)A_1 + \tau(-\mathbf{e}_2)A_2 + \tau(-\mathbf{e}_3)A_3$$

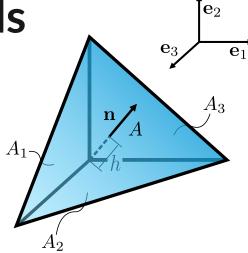
= $\tau(\mathbf{n})A - \tau(\mathbf{e}_1)A_1 - \tau(\mathbf{e}_2)A_2 - \tau(\mathbf{e}_3)A_3$

• We can calculate each face area (projection of nA onto each coordinate plane):

$$A_1 = (\mathbf{n} \cdot \mathbf{e}_1)A, \quad A_2 = (\mathbf{n} \cdot \mathbf{e}_2)A, \quad A_3 = (\mathbf{n} \cdot \mathbf{e}_3)A.$$

$$\implies \mathbf{f} = \Big(\tau(\mathbf{n}) - \tau(\mathbf{e}_1)(\mathbf{n} \cdot \mathbf{e}_1) - \tau(\mathbf{e}_2)(\mathbf{n} \cdot \mathbf{e}_2) - \tau(\mathbf{e}_3)(\mathbf{n} \cdot \mathbf{e}_3)\Big)A$$

• Let's calculate $\tau(\mathbf{n})$ at a point in the material by considering this special tiny tetrahedron:



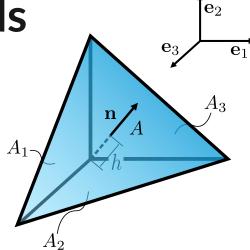
Net force acting on tetrahedron: sum forces acting on each face.

$$\mathbf{f} = \Big(au(\mathbf{n}) - au(\mathbf{e}_1)(\mathbf{n}\cdot\mathbf{e}_1) - au(\mathbf{e}_2)(\mathbf{n}\cdot\mathbf{e}_2) - au(\mathbf{e}_3)(\mathbf{n}\cdot\mathbf{e}_3)\Big)A$$

• This produces acceleration:

$$\mathbf{a} = rac{\mathbf{f}}{m} = rac{\mathbf{f}}{
ho V} = rac{1}{
ho rac{1}{3}Ah}\mathbf{f} = rac{3}{
ho h}\Big(au(\mathbf{n}) - au(\mathbf{e}_1)(\mathbf{n}\cdot\mathbf{e}_1) - au(\mathbf{e}_2)(\mathbf{n}\cdot\mathbf{e}_2) - au(\mathbf{e}_3)(\mathbf{n}\cdot\mathbf{e}_3)\Big).$$

- Cauchy's tetrahedron argument (1822)
 - Let's calculate $\tau(\mathbf{n})$ at a point in the material by considering this special tiny tetrahedron:

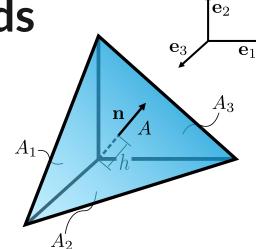


- Acceleration: $\mathbf{a} = \frac{3}{\rho h} \Big(\tau(\mathbf{n}) \tau(\mathbf{e}_1)(\mathbf{n} \cdot \mathbf{e}_1) \tau(\mathbf{e}_2)(\mathbf{n} \cdot \mathbf{e}_2) \tau(\mathbf{e}_3)(\mathbf{n} \cdot \mathbf{e}_3) \Big).$
- In the limit as the tetrahedron shrinks to zero, $h \to 0$. For the acceleration to be finite, expression in parentheses must vanish!

$$egin{aligned} au(\mathbf{n}) &= au(\mathbf{e}_1)(\mathbf{n} \cdot \mathbf{e}_1) + au(\mathbf{e}_2)(\mathbf{n} \cdot \mathbf{e}_2) + au(\mathbf{e}_3)(\mathbf{n} \cdot \mathbf{e}_3) \ &= [au(\mathbf{e}_1) \mid au(\mathbf{e}_2) \mid au(\mathbf{e}_3)] egin{pmatrix} \mathbf{n} \cdot \mathbf{e}_1 \ \mathbf{n} \cdot \mathbf{e}_2 \ \mathbf{n} \cdot \mathbf{e}_3 \end{pmatrix} = \sigma \mathbf{n} \end{aligned}$$

- Cauchy's tetrahedron argument (1822)
 - Let's calculate $\tau(\mathbf{n})$ at a point in the material by considering this special tiny tetrahedron:

$$\sigma = [au(\mathbf{e}_1) \mid au(\mathbf{e}_2) \mid au(\mathbf{e}_3)]$$



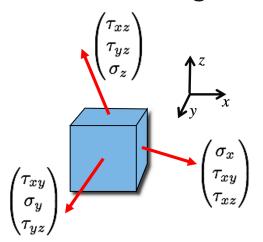
- We have shown traction $\tau(\mathbf{n}) = \sigma \mathbf{n}$.
 - \circ Traction acting on slicing plane with orientation **n** is a linear function of **n**, represented by matrix σ
- σ is called the *Cauchy stress tensor*; it's a 3×3 matrix for 3D problems.
- Requiring finite angular acceleration on an infinitesimal cube shows σ is symmetric.
 - \circ Symmetry means σ has three orthogonal eigenvectors $\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3$, the "directions of principal stress"
 - \circ \mathbf{n}_1 is the normal of the slicing plane with the greatest tension (least compression) $\sigma \mathbf{n}_1$ acting across it.
 - \circ \mathbf{n}_3 is the normal of the slicing plane with the greatest compression (least tension) $\sigma \mathbf{n}_3$ acting across it.
- Note: plane orientations \mathbf{n} and areas are measured in the deformed configuration!

Physical Interpretation of Stress Components

Cauchy stress tensor

$$\sigma = \left[au(\mathbf{e}_1) \mid au(\mathbf{e}_2) \mid au(\mathbf{e}_3)
ight] = egin{bmatrix} \sigma_x & au_{xy} & au_{xz} \ au_{xy} & \sigma_y & au_{yz} \ au_{xz} & au_{yz} & \sigma_z \end{bmatrix}$$

- \circ normal stress components σ_i
- \circ shear stress components au_{ij}
- Entries of σ give the traction acting on faces of a unit cube:



Stress from Hyperelastic Material Model

• Force acting per unit area on a slicing plane in the *deformed* configuration:

$$\tau(-\mathbf{n})$$

$$au(\mathbf{n}) = \sigma \mathbf{n},$$

where σ is the Cauchy Stress Tensor (a symmetric matrix).

- How is stress related to energy density Ψ for a hyperelastic material?
 - One can show that:

$$\sigma = \Psi'(
abla \Phi) rac{
abla \Phi^ op}{\det(
abla \Phi)},$$

where matrix $\Psi' = \frac{\partial \Psi(F)}{\partial F}$ is called the first Piola-Kirchhoff (PK1) stress.

• Physical interpretation: Ψ' **N** gives the force per unit *undeformed* area acting on plane described by normal **N** in the *undeformed* configuration. It is *asymmetric* in general.

Recap: Strain and Stress

Uniaxial bars:

- \circ 1D strain $\varepsilon := \Delta L/L$ (relative length change)
- \circ 1D stress $\sigma := f_{\mathrm{ext}}/A$ (applied force per unit area)

• 3D solids:

- \circ Strain tensors $\varepsilon_{\text{Biot}}$, $\varepsilon_{\text{Green}}$, etc.
 - \circ 3 \times 3 matrices encoding how the material is stretched along any direction.
 - \circ e.g., $\varepsilon_{\text{Green}} := \frac{1}{2} \left((\nabla \Phi)^{\top} \nabla \Phi I \right)$ lets us compute squared length change in any direction \mathbf{v} as $\mathbf{v}^{\top} \varepsilon_{\text{Green}} \mathbf{v}$.
- \circ Stress tensors: σ , Ψ' , .
 - $\circ~3\times3$ matrices encoding the force per unit area (traction) acting on an oriented slicing plane.
 - \circ Cauchy stress tensor σ gives the force per unit area (traction) acting on a plane with normal **n** in the deformed configuration as σ **n**.
 - 1st Piola-Kirchoff stress $\Psi' = \frac{\partial \Psi(F)}{\partial F}$ gives the force per unit area (traction) acting on a plane with normal **N** in the reference configuration as Ψ' **N**.

