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Challenge I: Make it stand

e Given some (digital) geometric object, how ;
can we determine if it stands?

e If it does not stand, how can we optimize
its shape, so that it does?
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Make It Stand: Balancing Shapes for 3D Fabrication, ACM SIGGRAPH 2013



https://igl.ethz.ch/projects/spin-it/

Make it spin

(a) unstable input (b) hollowed, optimized model (c) our spinning top design (d) elephant in motion

Spin-It: Optimizing Moment of Inertia for Spinnable Objects, ACM SIGGRAPH 2014
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Spin-It Faster: Quadrics Solve All Topology Optimization Problems That Depend Only On Mass Moments, ACM
SIGGRAPH 2024
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https://visualcomputing.ist.ac.at/publications/2024/SIF/
https://visualcomputing.ist.ac.at/publications/2024/SIF/
https://visualcomputing.ist.ac.at/publications/2024/SIF/

Make it swim

Buoyancy Optimization for Computational Fabrication, Eurographics 2016


https://onlinelibrary.wiley.com/doi/10.1111/cgf.12810

Make it swing

Figure 1: A goblet shape roly-poly toy example designed by our method. The snapshots show that the toy is able to regain
balance when pushed over.

Make it swing: Fabricating personalized roly-poly toys, Computer Aided Geometric Design 2016


https://www.sciencedirect.com/science/article/pii/S0167839616300024

Challenge Il: Inverse Elastic Shape Optimization

Target

fabrication

‘ Inverse computation

fabrication

e
>

Rest shape

An Asymptotic Numerical Method for Inverse Elastic Shape Design


http://kunzhou.net/zjugaps/ANMdesign/

Motivation

e 3D printing or casting can create very flexible objects!
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Maker’s Muse - Youtube


https://www.youtube.com/watch?v=7wMKp6q9ktE

Motivation

e 3D printing or casting can create very flexible objects!

Smooth-On - Youtube


https://www.youtube.com/watch?v=wd1fe4pMNa0

Motivation

e 3D printing or casting can create very flexible objects!

e Such objects (but really, any objects) deform under external forces (e.g gravity).

e How can we design objects that take this deformation into account?

o How can we modify designs such that under given external forces it deforms into the desired target state?



Challenge Il: Inverse Elastic Shape Optimization

e How can we simulate elastic objects? e We will look at:
o How can we model elastic deformation? o Continuum mechanics
o How can we discretize volumetric solids? o Finite element methods for tetrahedral meshes
o How can we find equilibrium states? o Newton-style methods for energy minimization
e How can we optimize elastic objects? e We will look at:
o How can we modify the rest shape? o Shape preservation
o How can we find the best modification? o Sensitivity analysis and the adjoint method for
o such that the object deforms into a given target inverse shape optimization

geometry under given external forces.
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Aside: Prestressed Concrete

S |

Unstressed beam

” Load deflection (down)

Tendons stressed

>

Prestress forces
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Total deflection (flat)
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Source

Wikipedia
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https://en.wikipedia.org/wiki/Prestressed_concrete
https://mtcopeland.com/blog/what-is-prestressed-concrete/

Origins of Elasticity

o All solids are elastic to some degree (depending on internal structure).

Siicon Si Siicone [SICH), 01,

Wikipedia

Crystal
Structure

Polymer
Structure




What Level of Simulation?

e A-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)
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What Level of Simulation?

e A-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)

e nm-scale: Molecular Dynamics (empirical interatomic potentials)
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What Level of Simulation?

e A-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)
e nm-scale: Molecular Dynamics (empirical interatomic potentials)

e mm-scale+: Continuum Mechanics Models (partial differential equations)

I
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What Level of Simulation?

A-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)
nm-scale: Molecular Dynamics (empirical interatomic potentials)
mm-scale+: Continuum Mechanics Models (partial differential equations)

large scales: Homogenized Elasticity Models
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What Level of Simulation?

A-scale: Quantum Simulations (first principles: Density-Functional Theory, ...)
nm-scale: Molecular Dynamics (empirical interatomic potentials)
mm-scale+: Continuum Mechanics Models (partial differential equations)

large scales: Homogenized Elasticity Models

We will focus on continuum mechanics models.
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Linear Springs (Hooke’s Law) in nD

e MMAVNS o~ x
Xo X1 ./N/'

e Express a spring’s energy in terms of undeformed/deformed points

1 2
Eping = Ek(Hxl — xo|| — [| X1 — Xo]|)

e Force on point x; applied by spring points along spring axis
a-Espring

_ — k(|[x1 — %o|| — [ X1 - X
o, (%1 — o] — | X1 — X))

X0 — X1

|x0 — x4
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Material Properties

e Consider a rectangular elastic rod with rest length L, area A and spring constant k:

~

f ext

f ext

 According to Hooke’s law, it changes length by AL = =2
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Material Properties

e What happens when we glue it to an identical copy?

2L

A
f ext

e Both rods change length by AL — total length change is 2AL.

e Spring constant changes to k= S = 1./t _ 1
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Material Properties

e Now let’s glue together 4 copies of the lengthened rod:

2L

4A
f ext

e Our force is spread across all 4 copies = only f.,;/4 acts on each.

foi/A=kAL = fo.=4kAL = kAL

e Spring constant changes to k= 4k,

21



Material Properties

2L

4A
f ext

e Spring constant k£ confounds material properties with geometry.
o Scaling length by s divides k by s.

o Scaling cross-section area by s multiplies k by s.

o |ldea:useY = LTf“ as a geometry-independent measure of stiffness.
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Young’s modulus, Stress and Strain

e This material parameter “Y” (often denoted “E”) is called the Young’s modulus
o Force per unit area (typical units: Pascals, Megapascals, Gigapascals)

o Can recover spring stiffness by k = YTA.

o Better yet: work with
o strain € := AL/L (relative length change) instead of absolute length change

o stress o := f../A (applied force per unit area) instead of total force.

o Then Hooke’s law in 1D is just:
oc=Ye¢
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Recall: Spring Networks

Reference Configuration Deformed Configuration

-

e Rudimentary spring-based deformable object model:

o Sample a set of points X; and connect them with springs.

o Now our deformed configuration is described by x; = ®(X;).
(Simulation problem is now optimizing a set of position variables.)

24



e Full elastic energy of spring system: just sum them up!

Eelastlc X X)

Spring System Energy

Reference Configuration

Deformed Configuration

X7

X5

Z ij (Ilxs — x| —

I1X: — X))
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Spring Simulation Cons

e Behavior is extremely mesh dependent!

e Unclear what arrangement of springs will properly
model bending/shearing.

e Alternative (coming up): a continuum-mechanics-
based simulation.

o Define elastic potential energy stored by arbitrary ®
o Define strain and stress for 2D/3D objects.

o Discretize the function space @ lives in (Finite Element
Method)
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Continuum Mechanics

Reference Configuration

Deformed Configuration

o Ultimately, we will replace 1D “edge springs”...




Continuum Mechanics

Reference Configuration Deformed Configuration
X7

e Ultimately, we will replace 1D “edge springs” with 2D “triangle springs”
and 3D “tetrahedron springs.”

e How do we ensure these “springs” are physically accurate/not badly mesh-dependent?
Derive stiffnesses by discretizing a continuum mechanics model.



Continuum Mechanics

Reference Configuration Deformed Configuration

o

e We will study continuum mechanics models of the elastic energy stored in a volumetric
solid due to an arbitrary deformation &.

e We will consider hyperelastic energies where the energy is purely a function of ®
(ignoring past state; path independent).
o Energy returns to zero when the deformation returns to the identity map ®(X) = X.
o Good approximation for the fabrication applications we care about.
o Rules out plastic (irreversible) deformation-but these can be handled by updating the rest state.



Hyperelastic vs Non-Hyperelastic

SMOGTH LYy 3
M. SM00Th ot g i

Example of Hyperelastic Material: Silicone



Hyperelastic vs Non-Hyperelastic

A material point method
for snow simulation

Alexey Stomakhin
Craig Schroeder
Lawrence Chai
Joseph Teran

Andrew Selle Professor Teran
UC Davis Math

University of California - Los Angeles
Walt Disney Animation Studios

(contains audio) SIGGRAPH 2013
©Disney

Example of non-Hyperelastic Material: Snow. A material point method for snow simulation




Distortions Induced by &

Reference Configuration Deformed Configuration

o Let's study how the mapping distorts small oriented “fibers” of the material.

o Consider an infinitesimal vector v (Il vIl < 1) connecting material points X and X + v in rest config.
o After deforming by ®, this vector v is distorted into ®(X + v) — ®(X).
o From a Taylor expansion around X, we see v is distorted into:

(®(X) + Ve(X)v+ O(lIvi?) — ®(X) = V&(X)v.

o This relationship v — V&®(X)v holds for arbitrary infinitesimal vectors v.

V&(X) encodes how fibers oriented in all directions at X get distorted!



https://en.wikipedia.org/wiki/Taylor_series

Deformation Gradient

Reference Configuration Deformed Configuration

Vo(X) ]
Vo

o

e Distortion is captured by F := V®(X), the deformation gradient (Jacobian) of ®.

e Elastic energy per unit volume can be formulated as an energy density function ¥(V®).

o ¥ : R™™ — R (scalar-valued function of a matrix) encodes the material’s elastic properties.
o ¥ can optionally vary from point to point to model heterogeneous materials (i.e., ¥(V®(X), X)).

o We'll see later that ¥ must satisfy certain properties to make sense as a material model.



Elastic Energy and Forces

e Deformation gradient V®(X), energy density function ¥(V®).

e The full elastic energy in the object is the integral of the energy density:

Compare to:

Eepastic | ®] := /Q ¥(Ve)dX. Boprng(3,X) = X, S (i — %] — 1% — X, 1)’

e ‘Simple’ formula for directional derivative along perturbation (displacement) 6 ®:

aE‘elas’cic d
< e ,5q>> -2

(@) ax=| [ w(ve): vem)ax

e The matrix ¥’ is the derivative of ¥ with respect to its matrix argument:




Aside

Double Dot Products
The double dot product of two matrices produces a scalar result. It is written in matrix notation as A. : B. Once again, its calculation is best explained with tensor notation.
A:B = A;;B;;
Since the ¢ and j subscripts appear in both factors, they are both summed to give
A:B = A;B;j = AnxBn + Ap*xBp + ApxBiz +

Ag1 * By + ApaxByy + Axpyx By +
Az * B3 + Az x B3y +  Aszz* Bss

(
G Double Dot Product Example

1 2 3 1 4 7
f A=14 2 2 and B=[|2 5 8 then
2 3 4 3 6 9

4x2 + 25 + 2x8 +
2x3 + 3%6 + 4x9

= 124

Tensor Notation Basics

10


https://www.continuummechanics.org/tensornotationbasic.html

Elastic Energy and Forces

Eelastic[q)] — /Q\I’(V(I)) dX,

<8-Eaegsﬁc [<I>],5<I>> = /Q (V) : V(63) dX.

e Physical interpretations: (negative) work done by elastic forces over displacement §9.
e In our computations, ® is controlled by a finite set of deformation variables z,.

e Changing z, induces perturbation é®,, allowing us to
compute components of the gradient:

alyelastic 8Ee|astic
Oz, _< 0P ’5(I)a>

whose negation gives “elastic force” on variable z,.




Remaining Questions

Eelastic[q)] — LW(V@) dX,

<8-Eae£5ﬁc [<I>],5<I>> = /ﬂ (V) : V(63) dX.

e These formulas are powerful and “simple” (assuming comfort with tensors) but abstract.

o How do we define ¥(F') to model a specific material?
o How do we analyze the resulting deformation (will the object break?)

o How to do all of this on a computer?
e To answer the first two, we will study the stress and strain occurring in our object.

e For computations, we will use the finite element method (FEM), discretizing the function
space @ lives in.

12



Strain and Stress

.

f ext

e Recall 1D Bar:

e We recommended working with the “geometry-invariant” properties:

o strain e := AL/L (relative length change) instead of absolute length change

o stress o := f.,:/A (applied force per unit area) instead of total force.

e Then Hooke’s law (linear material) in 1D is just:

1 1
oc=Ye, energydensity¥ = Esa = §Y62.

e How do we generalize this to n dimensions?

Can we just use V@ for strain?

13



Strain Measures

e Measuring distortion using the deformation gradient V® has one main issue:

o It is sensitive to rotation of material, which does not store or release elastic energy.

e To factor out rotation, we can use the

polar decomposition: /@R

V& = RS, @

e S is a symmetric matrix representing pure
stretching/compression along orthogonal axes. R 7

e Ris a rotation matrix. i’ — I:I

o Always guaranteed to exist; is uniqgue when V@ is
nonsingular.

14


https://en.wikipedia.org/wiki/Polar_decomposition

Strain Measures

e Measuring distortion using the deformation gradient V® has one main issue:

o It is sensitive to rotation of material, which does not store or release elastic energy.

e To factor out rotation, we can use the

polar decomposition: /@R

V& = RS, @

e Now § = I if and only if the material purely rotates.
o Biot strain egjo; := S — I is truly a measure of how [ —

much the material has distorted. i’ — I:I

o Computing and differentiating the polar
decomposition can be inconvenient, so Biot strain is

not commonly used.

15


https://en.wikipedia.org/wiki/Polar_decomposition

Strain Measures

e Notice that we can compute the (rotation-invariant)
squared length of a deformed material fiber as:

[VEV|*> =vT(V®)' Vdv.

e The change in squared length is thus:
IVev|?— ivi2 = vI(V®) Vv —v v = v ((V<I>)TV<I> _ I)v.
e This motivates the use of Green-Lagrange strain:
€ Groen 1= % ((V<I>)TV<I> _ I).

O Egreen IS Fotation invariant since (V®) ' V& = (RS)' RS = SRTRS = S2.

o Very popular due to its mathematical simplicity: no polar decomposition needed.

16



Strain Measures

Polar decomposition V® = RS £ VO N
Intuitive but somewhat difficult to compute measure: @
8Bi0t — S — I. P .
="
Convenient, popular strain measure: Ay

Eoreen 1= ((V<I>)TV<I> _ I).

Many more strain measures have been used: Hencky Strain, Almansi Strain, ...

All of these are equivalent at small strains (and will linearize to Cauchy strain tensor
when we study linear elasticity)!

1 1 1
Soreen = 5 (87 = 1) = 5 (8ot + 1)* = 1) = €piot + 5 €51

We can easily ensure energy density ¥ depends on pure deformation (not rotation),
U(V®) = U(RS) = ¥(S) by defining ¥ in terms of strain!

o This rotational invariance is needed for ¥ to make physical sense.
17



Reading

v Y Draw v & AN -+ 1 | of35 ) (B Q €3

ill
T

SIGGRAPH 2

FEM Simulation of 3D Deform
guide to theory, discretizati
Part O

The classical FEM method and

Siggraph 2012 Course Notes - femdefo.org


http://femdefo.org/

e More background: Bonet, Javier, and Richard D. Wood. Nonlinear Continuum Mechanics
for Finite Element Analysis. 2nd ed., Cambridge University Press, 2008.
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mal Structures: Bird Bone

19


https://x.com/microscopicture/status/1795529430514962807/photo/1
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Recap: Deformation Gradient and Elastic Energy

Reference Configuration Deformed Configuration

;S
| @

e & :R3 — R3 defines deformation of a solid.




Recap: Deformation Gradient and Elastic Energy

Reference Configuration Deformed Configuration

Vo (X) ]
Vo(X)v

@——

T 3(X)

® : R3 — R3 defines deformation of a solid.

V&(X) is the Jacobian of ®, g%' :

o Encodes how short fibers oriented in any direction at X get distorted.

o Usually called the deformation gradient and given the label F'

Hyperelastic material model: elastic energy density function ¥(F')
o Function mapping 3 x 3 matrices to scalars, ¥ : R3*3 — R.
o Measures the energy stored in the material due the stretching caused by F.

Elastic energy Eopasiic[®] == [P (V®) dX



Recap: Strain

e How much is material stretched/compressed by a deformation gradient F?

e Example: Iinearly deformed triangle
X = FX e

/\

X0

X X1
o Material stretch/compression is unaffected by rotating the triangle.
o Deformations ®(X) = FX and ®(X) = RFX apply the same distortion.

o When F = R, the deformation is (locally) pure rotation, causing no stretch.

e Strain tensors give us a measure of distortion that factors out this rotation.

o Biot strain: eg,; := S — I where S is from the polar decomposition F' = RS

o Green strain €¢een 1= % ((V@)TV@ — I) = %(S2 — I) Elastic energy density ¥ will

measure the “magnitude” of &!

o Strain tensor is zero if and only if the material transforms rigidly.



Simple 2D Strain Example

Reference Configuration Deformed Configuration

EE—

(1,0) (1+s,0)

e 2D bar has been stretched horizontally by the constant strain deformation:

3(X) = [133 (1)])(

e Deformation gradient is just the constant matrix:

Va(X) = [

1 + 8 O:| polar decomposition

1 1
e o Ve -ns i n= [ T s [V

0 1 0 1

e Strain measures agree to first order in s (and [eg;¢] o, Matches 1D strain definition):
2
s+%5 0 .
0 0

. [s 0 1., . 1([A+s)2-1 0]\
Fior =5 I‘[o 0]’ Foren = 5 (8 _I)_z([ 0 oD‘




Simple 2D Strain Example

Reference Configuration Deformed Configuration
/-\ cos(f) —sin(6) 1+s
sin(d)  cos(9) 0

e 2D bar has been deformed by the constant strain map:

COR oo | N

e Deformation gradient is just the constant matrix:

R e e R e = el

e Strain measures agree to first order in s (and [eg;o¢] o, Matches 1D strain definition):

T TR 1 (PSS

io =S5—-1=
Bt [0 0

s—|—%0
0 0|



Stress Measures

e When material is stretched by a strain e, © Stainhadening | Necking

Stress, o
/

it responds with elastic restoring forces. A
Ultimate strength

o For beams, it was convenient to look at the
restoring force per unit area

o Stress o := foi/A

o Hooke’s law in 1D:
A
oc=Ye,

valid for small strains. fext

N

Fracture

Yield strength

Rise

Young's modulus = Slope = Run

e Stresses are important because they tell us
when an object will break.

o This concept is not actually needed to define a
hyperelastic material model .

» Strain, €

Young’s modulus is the initial stress/strain slope

o The elastic energy density in a beam is %Ys?

e How do we define stress for 3D solids?


https://en.wikipedia.org/wiki/Young%27s_modulus

Stress in Beams

e Recall 1D Bar \

o Suppose we clamp the “back” and pull on the “front” with

\ A
stress o := f.,:/A (applied force per unit area)
} ext

e |nside the bar at equilibrium, we have analogous forces

o Material on one side of each slicing plane pulls on material on the opposite side.
o In equilibrium, every orthogonal slicing plane experiences the same force over the same area.

o We say this is a state of constant stress o.

e Stress is a scalar quantity here since we consider only 1D (axial) forces that act on
material planes with a single orientation (perpendicular to axis).



Stress in 3D Solids

e How does this generalize to 3D solids?

o Arbitrary slicing plane orientation n

o Arbitrary force-per-unit-area (“traction”) vector 7(n) acting on this face.

e 7(n) is some function of n. What form must it take?
o By Newton'’s third law 7(—n) = —7(n).

o Can we say more? Yes, much more!



Stress in 3D Solids .

€3 €1

e Cauchy’s tetrahedron argument (1822) As

o Let’s calculate 7(n) at a point in the material by considering A
this special tiny tetrahedron:

Ay
e Net force acting on tetrahedron: sum forces acting on each face.

f = T(n)A + T(—el)Al + T(—ez)Az + T(—e3)A3
= T(n)A — T(el)Al — T(ez)Az — T(e3)A3

e We can calculate each face area (projection of nA onto each coordinate plane):

Al = (n . el)A, A2 = (n . ez)A, A3 = (n . e3)A.

— £=(1(n) — 7(e1)(n- e1) — 7(e2)(n - €2) — 7(es)(n - €5)) A
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Stress in 3D Solids .

e Cauchy’s tetrahedron argument (1822) As
o Let’s calculate 7(n) at a point in the material by considering A,
this special tiny tetrahedron:
As
e Net force acting on tetrahedron: sum forces acting on each face.
f— (T(n) —r(e1)(n-e;) — 7(es)(n - es) — 7(e3)(n - eg))A
e This produces acceleration:
f f 1 3
a=—=—= f=—(7'n—7'e n-ej)—T7(e)(n-ex) —7(es)(n-
= = Tt o (@)~ rle)(m- o) — rlex)(m-ez) —(es)

11



Stress in 3D Solids .

€3 €1

e Cauchy’s tetrahedron argument (1822) As

o Let’s calculate 7(n) at a point in the material by considering A
this special tiny tetrahedron:

Az
3

» Acceleration: a = % (T(n) —r(e1)(n-e;) — 7(es)(n - es) — 7(e3)(n - e3)).

e |n the limit as the tetrahedron shrinks to zero, h — 0.
For the acceleration to be finite, expression in parentheses must vanish!

T(n) =7(e1)(n-e1) +7(ez)(n-e3) + 7(e3)(n - e3)
— [T(el) | 7'(92) | 7'(93)] n-e | =on

Il - €3

12



Stress in 3D Solids .

€3 €1

e Cauchy’s tetrahedron argument (1822) As

o Let’s calculate 7(n) at a point in the material by considering A
this special tiny tetrahedron:

o =[r(e1) | T(ez2) | T(e3)] 4,

e We have shown traction 7(n) = on.

o Traction acting on slicing plane with orientation n is a linear function of n, represented by matrix o
e o is called the Cauchy stress tensor; it's a 3 x 3 matrix for 3D problems.

e Requiring finite angular acceleration on an infinitesimal cube shows o is symmetric.

o Symmetry means ¢ has three orthogonal eigenvectors nq, ns, n3, the “directions of principal stress”
o n; is the normal of the slicing plane with the greatest tension (least compression) on; acting across it.

o ng is the normal of the slicing plane with the greatest compression (least tension) ong acting across it.

e Note: plane orientations n and areas are measured in the deformed configuration!

13



Physical Interpretation of Stress Components

e Cauchy stress tensor

o=|[r(e1) | 7(e2) | 7(es)] = |Tay o0y Ty

o normal stress components o;

o shear stress components 7;;

e Entries of o give the traction acting on faces of a unit cube:

14



Stress from Hyperelastic Material Model

e Force acting per unit area on a slicing plane in the deformed
configuration:

7(n) = on,
where o is the Cauchy Stress Tensor (a symmetric matrix).

e How is stress related to energy density ¥ for a hyperelastic material?

o One can show that:

\vZ: 3l
= U'(V® ,
o =¥V Ve
where matrix ¥/ = aq(;%F) is called the first Piola-Kirchhoff (PK1) stress.

e Physical interpretation: ¥/ N gives the force per unit undeformed area acting on plane
described by normal N in the undeformed configuration. It is asymmetric in general.
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Recap: Strain and Stress

e Uniaxial bars:
o 1D strain € := AL/ L (relative length change)

o 1D stress o := f..;/A (applied force per unit area)

e 3D solids:

o Strain tensors €giot, €Green, €tC.
o 3 x 3 matrices encoding how the material is stretched along any direction.

o e.9., EGreen \= % ((V<I>)TV<I> — I) lets us compute squared length change in

any direction v as v ' €green V-

o Stress tensors: o, ¥/, .

o 3 x 3 matrices encoding the force per unit area (traction) acting on an
oriented slicing plane.

o Cauchy stress tensor o gives the force per unit area (traction) acting on a
plane with normal n in the deformed configuration as on.

o 1st Piola-Kirchoff stress ¥' = 6\15%1?) gives the force per unit area (traction)

acting on a plane with normal N in the reference configuration as ¥'N.
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