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Given some (digital) geometric object, how
can we determine if it stands?

If it does not stand, how can we optimize
its shape, so that it does?

 

Challenge I: Make it stand

Make It Stand: Balancing Shapes for 3D Fabrication, ACM SIGGRAPH 2013
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https://igl.ethz.ch/projects/spin-it/


Make it spin

Spin-It: Optimizing Moment of Inertia for Spinnable Objects, ACM SIGGRAPH 2014

Spin-It Faster: Quadrics Solve All Topology Optimization Problems That Depend Only On Mass Moments, ACM
SIGGRAPH 2024
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https://visualcomputing.ist.ac.at/publications/2024/SIF/
https://visualcomputing.ist.ac.at/publications/2024/SIF/
https://visualcomputing.ist.ac.at/publications/2024/SIF/


Make it swim

Buoyancy Optimization for Computational Fabrication, Eurographics 2016
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https://onlinelibrary.wiley.com/doi/10.1111/cgf.12810


Make it swing

Make it swing: Fabricating personalized roly-poly toys, Computer Aided Geometric Design 2016
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https://www.sciencedirect.com/science/article/pii/S0167839616300024


Challenge II: Inverse Elastic Shape Optimization

An Asymptotic Numerical Method for Inverse Elastic Shape Design
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http://kunzhou.net/zjugaps/ANMdesign/


Motivation

3D printing or casting can create very flexible objects!

Maker’s Muse - Youtube

7

https://www.youtube.com/watch?v=7wMKp6q9ktE


Motivation

3D printing or casting can create very flexible objects!

Smooth-On - Youtube
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https://www.youtube.com/watch?v=wd1fe4pMNa0


Motivation

3D printing or casting can create very flexible objects!

 

Such objects (but really, any objects) deform under external forces (e.g gravity).

How can we design objects that take this deformation into account?
How can we modify designs such that under given external forces it deforms into the desired target state?
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Challenge II: Inverse Elastic Shape Optimization

How can we simulate elastic objects?
How can we model elastic deformation?

How can we discretize volumetric solids?

How can we find equilibrium states?

We will look at:
Continuum mechanics

Finite element methods for tetrahedral meshes

Newton-style methods for energy minimization

How can we optimize elastic objects?
How can we modify the rest shape?

How can we find the best modification?

such that the object deforms into a given target
geometry under given external forces.

We will look at:
Shape preservation

Sensitivity analysis and the adjoint method for
inverse shape optimization
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Aside: Prestressed Concrete

Wikipedia
Source
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https://en.wikipedia.org/wiki/Prestressed_concrete
https://mtcopeland.com/blog/what-is-prestressed-concrete/


Origins of Elasticity

All solids are elastic to some degree (depending on internal structure).

Wikipedia

Crystal
Structure

Silicon Si Silicone [Si(CH₃)₂O]n

Polymer
Structure
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What Level of Simulation?

Å-scale: Quantum Simulations (first principles: Density-Functional Theory, …)
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What Level of Simulation?

Å-scale: Quantum Simulations (first principles: Density-Functional Theory, …)

nm-scale: Molecular Dynamics (empirical interatomic potentials)
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What Level of Simulation?

Å-scale: Quantum Simulations (first principles: Density-Functional Theory, …)

nm-scale: Molecular Dynamics (empirical interatomic potentials)

mm-scale+: Continuum Mechanics Models (partial differential equations)
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What Level of Simulation?

Å-scale: Quantum Simulations (first principles: Density-Functional Theory, …)

nm-scale: Molecular Dynamics (empirical interatomic potentials)

mm-scale+: Continuum Mechanics Models (partial differential equations)

large scales: Homogenized Elasticity Models
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What Level of Simulation?

Å-scale: Quantum Simulations (first principles: Density-Functional Theory, …)

nm-scale: Molecular Dynamics (empirical interatomic potentials)

mm-scale+: Continuum Mechanics Models (partial differential equations)

large scales: Homogenized Elasticity Models

We will focus on continuum mechanics models.
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Linear Springs (Hooke’s Law) in nD

Express a spring’s energy in terms of undeformed/deformed points

spring

Force on point  applied by spring points along spring axis

spring
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Material Properties

Consider a rectangular elastic rod with rest length , area  and spring constant :

According to Hooke’s law, it changes length by ext
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Material Properties

What happens when we glue it to an identical copy?

Both rods change length by   total length change is .

Spring constant changes to ext ext .
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Material Properties

Now let’s glue together 4 copies of the lengthened rod:

Our force is spread across all 4 copies  only ext  acts on each.

ext ext

Spring constant changes to .
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Material Properties

Spring constant  confounds material properties with geometry.
Scaling length by  divides  by .

Scaling cross-section area by  multiplies  by .

Idea: use  as a geometry-independent measure of stiffness.
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Young’s modulus, Stress and Strain

This material parameter “ ” (often denoted “ ”) is called the Young’s modulus
Force per unit area (typical units: Pascals, Megapascals, Gigapascals)

Can recover spring stiffness by .

Better yet: work with

strain  (relative length change) instead of absolute length change

stress ext  (applied force per unit area) instead of total force.

Then Hooke’s law in 1D is just:
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Recall: Spring Networks

Reference Configuration Deformed Configuration

 

Rudimentary spring-based deformable object model:
Sample a set of points  and connect them with springs.

Now our deformed configuration is described by .
(Simulation problem is now optimizing a set of position variables.)
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Spring System Energy

Reference Configuration Deformed Configuration

 

Full elastic energy of spring system: just sum them up!

elastic
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Spring Simulation Cons

Behavior is extremely mesh dependent!

Unclear what arrangement of springs will properly
model bending/shearing.

Alternative (coming up): a continuum-mechanics-
based simulation.

Define elastic potential energy stored by arbitrary 

Define strain and stress for 2D/3D objects.

Discretize the function space  lives in (Finite Element
Method)
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Continuum Mechanics

Reference Configuration Deformed Configuration

Ultimately, we will replace 1D “edge springs”…
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Continuum Mechanics

Reference Configuration Deformed Configuration

Ultimately, we will replace 1D “edge springs” with 2D “triangle springs”
and 3D “tetrahedron springs.”

How do we ensure these “springs” are physically accurate/not badly mesh-dependent?
Derive stiffnesses by discretizing a continuum mechanics model.
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Continuum Mechanics

Reference Configuration Deformed Configuration

We will study continuum mechanics models of the elastic energy stored in a volumetric
solid due to an arbitrary deformation .

We will consider hyperelastic energies where the energy is purely a function of 
(ignoring past state; path independent).

Energy returns to zero when the deformation returns to the identity map .

Good approximation for the fabrication applications we care about.

Rules out plastic (irreversible) deformation–but these can be handled by updating the rest state.
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Hyperelastic vs Non-Hyperelastic

Example of Hyperelastic Material: Silicone
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Hyperelastic vs Non-Hyperelastic

Example of non-Hyperelastic Material: Snow. A material point method for snow simulation
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Distortions Induced by 

Reference Configuration Deformed Configuration

Let’s study how the mapping distorts small oriented “fibers” of the material.
Consider an infinitesimal vector  ( ) connecting material points  and  in rest config.

After deforming by , this vector  is distorted into .

From a  around , we see  is distorted into:Taylor expansion

This relationship  holds for arbitrary infinitesimal vectors .

 encodes how fibers oriented in all directions at  get distorted!
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https://en.wikipedia.org/wiki/Taylor_series


Deformation Gradient

Reference Configuration Deformed Configuration

Distortion is captured by , the deformation gradient (Jacobian) of .

Elastic energy per unit volume can be formulated as an energy density function 
 (scalar-valued function of a matrix) encodes the material’s elastic properties.

 can optionally vary from point to point to model heterogeneous materials (i.e., ).

We’ll see later that  must satisfy certain properties to make sense as a material model.
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Elastic Energy and Forces

Deformation gradient , energy density function 

The full elastic energy in the object is the integral of the energy density:

elastic

Compare to:
spring

‘Simple’ formula for directional derivative along perturbation (displacement) :

elastic

The matrix  is the derivative of  with respect to its matrix argument:
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Aside

Tensor Notation Basics
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https://www.continuummechanics.org/tensornotationbasic.html


Elastic Energy and Forces

elastic

elastic

Physical interpretations: (negative) work done by elastic forces over displacement .

In our computations,  is controlled by a finite set of deformation variables .

Changing  induces perturbation , allowing us to
compute components of the gradient:

elastic elastic

whose negation gives “elastic force” on variable .
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Remaining Questions

elastic

elastic

These formulas are powerful and “simple” (assuming comfort with tensors) but abstract.
How do we define  to model a specific material?

How do we analyze the resulting deformation (will the object break?)

How to do all of this on a computer?

To answer the first two, we will study the stress and strain occurring in our object.

For computations, we will use the finite element method (FEM), discretizing the function
space  lives in.
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Recall 1D Bar:

Strain and Stress

 

We recommended working with the “geometry-invariant” properties:
strain  (relative length change) instead of absolute length change

stress ext  (applied force per unit area) instead of total force.

Then Hooke’s law (linear material) in 1D is just:

energy density 

How do we generalize this to  dimensions?

Can we just use  for strain?
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Strain Measures

Measuring distortion using the deformation gradient  has one main issue:
It is sensitive to rotation of material, which does not store or release elastic energy.

To factor out rotation, we can use the
:polar decomposition

 is a symmetric matrix representing pure
stretching/compression along orthogonal axes.

 is a rotation matrix.

Always guaranteed to exist; is unique when  is
nonsingular.
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https://en.wikipedia.org/wiki/Polar_decomposition


To factor out rotation, we can use the
:

Strain Measures

Measuring distortion using the deformation gradient  has one main issue:
It is sensitive to rotation of material, which does not store or release elastic energy.

polar decomposition

Now  if and only if the material purely rotates.

Biot strain Biot  is truly a measure of how
much the material has distorted.

Computing and differentiating the polar
decomposition can be inconvenient, so Biot strain is
not commonly used.
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https://en.wikipedia.org/wiki/Polar_decomposition


Notice that we can compute the (rotation-invariant)
squared length of a deformed material fiber as:

Strain Measures

The change in squared length is thus:

This motivates the use of Green-Lagrange strain:

Green

Green is rotation invariant since 

Very popular due to its mathematical simplicity: no polar decomposition needed.
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Polar decomposition 

Intuitive but somewhat difficult to compute measure:

Biot

Convenient, popular strain measure:

Green

Strain Measures

Many more strain measures have been used: Hencky Strain, Almansi Strain, …

All of these are equivalent at small strains (and will linearize to Cauchy strain tensor
when we study linear elasticity)!

Green Biot Biot Biot

We can easily ensure energy density  depends on pure deformation (not rotation),
 by defining  in terms of strain!

This rotational invariance is needed for  to make physical sense.
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Reading

of 35Draw 1

Siggraph 2012 Course Notes – femdefo.org

http://femdefo.org/


More background: Bonet, Javier, and Richard D. Wood. Nonlinear Continuum Mechanics
for Finite Element Analysis. 2nd ed., Cambridge University Press, 2008.
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Optimal Structures: Bird Bone

Source
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https://x.com/microscopicture/status/1795529430514962807/photo/1
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Recap: Deformation Gradient and Elastic Energy

Reference Configuration Deformed Configuration

 defines deformation of a solid.
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Recap: Deformation Gradient and Elastic Energy

Reference Configuration Deformed Configuration

 defines deformation of a solid.

 is the Jacobian of  .

Encodes how short fibers oriented in any direction at  get distorted.

Usually called the deformation gradient and given the label .

Hyperelastic material model: elastic energy density function 
Function mapping  matrices to scalars, .

Measures the energy stored in the material due the stretching caused by .

Elastic energy elastic
3



Recap: Strain

How much is material stretched/compressed by a deformation gradient ?

Example: linearly deformed triangle

Material stretch/compression is unaffected by rotating the triangle.

Deformations  and  apply the same distortion.

When , the deformation is (locally) pure rotation, causing no stretch.

Strain tensors give us a measure of distortion that factors out this rotation.
Biot strain: Biot  where  is from the polar decomposition 

Green strain Green

Strain tensor is zero if and only if the material transforms rigidly.

Elastic energy density  will
measure the “magnitude” of !
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Simple 2D Strain Example

Reference Configuration Deformed Configuration

(1, 0) (1+s, 0)

Φ

2D bar has been stretched horizontally by the constant strain deformation:

Deformation gradient is just the constant matrix:

polar decomposition
 with 

Strain measures agree to first order in  (and Biot  matches 1D strain definition):

Biot Green
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Simple 2D Strain Example

Reference Configuration Deformed Configuration

(1, 0)

Φ

2D bar has been deformed by the constant strain map:

Deformation gradient is just the constant matrix:

polar decomposition
 with 

Strain measures agree to first order in  (and Biot  matches 1D strain definition):

Biot Green
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Stress ext

Hooke’s law in 1D:

valid for small strains.

When material is stretched by a strain  ,
it responds with elastic restoring forces.

For beams, it was convenient to look at the
restoring force per unit area

Strain, ε

Stress, σ

Ultimate strength

Strain hardening Necking

Rise

Young's modulus = Slope = 

Fracture

Yield strength

Run

Run
Rise

 is the initial stress/strain slope

Stress Measures

Stresses are important because they tell us
when an object will break.

This concept is not actually needed to define a
hyperelastic material model .

The elastic energy density in a beam is .

How do we define stress for 3D solids?

Young’s modulus
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https://en.wikipedia.org/wiki/Young%27s_modulus


Recall 1D Bar
Suppose we clamp the “back” and pull on the “front” with
stress ext  (applied force per unit area)

Stress in Beams

Inside the bar at equilibrium, we have analogous forces
Material on one side of each slicing plane pulls on material on the opposite side.

In equilibrium, every orthogonal slicing plane experiences the same force over the same area.

We say this is a state of constant stress .

Stress is a scalar quantity here since we consider only 1D (axial) forces that act on
material planes with a single orientation (perpendicular to axis).
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Stress in 3D Solids

How does this generalize to 3D solids?
Arbitrary slicing plane orientation 

Arbitrary force-per-unit-area (“traction”) vector  acting on this face.

 is some function of . What form must it take?
By Newton’s third law .

Can we say more? Yes, much more!
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Cauchy’s tetrahedron argument (1822)
Let’s calculate  at a point in the material by considering
this special tiny tetrahedron:

Stress in 3D Solids

Net force acting on tetrahedron: sum forces acting on each face.

We can calculate each face area (projection of  onto each coordinate plane):
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Cauchy’s tetrahedron argument (1822)
Let’s calculate  at a point in the material by considering
this special tiny tetrahedron:

Stress in 3D Solids

Net force acting on tetrahedron: sum forces acting on each face.

This produces acceleration:
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Cauchy’s tetrahedron argument (1822)
Let’s calculate  at a point in the material by considering
this special tiny tetrahedron:

Stress in 3D Solids

Acceleration: 

In the limit as the tetrahedron shrinks to zero, .
For the acceleration to be finite, expression in parentheses must vanish!
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Cauchy’s tetrahedron argument (1822)
Let’s calculate  at a point in the material by considering
this special tiny tetrahedron:

Stress in 3D Solids

We have shown traction .
Traction acting on slicing plane with orientation  is a linear function of , represented by matrix 

 is called the Cauchy stress tensor; it’s a  matrix for 3D problems.

Requiring finite angular acceleration on an infinitesimal cube shows  is symmetric.
Symmetry means  has three orthogonal eigenvectors , the “directions of principal stress”

 is the normal of the slicing plane with the greatest tension (least compression)  acting across it.

 is the normal of the slicing plane with the greatest compression (least tension)  acting across it.

Note: plane orientations  and areas are measured in the deformed configuration!
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Physical Interpretation of Stress Components

Cauchy stress tensor

normal stress components 

shear stress components 

Entries of  give the traction acting on faces of a unit cube:
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Force acting per unit area on a slicing plane in the deformed
configuration:

where  is the Cauchy Stress Tensor (a symmetric matrix).

Stress from Hyperelastic Material Model

How is stress related to energy density  for a hyperelastic material?
One can show that:

where matrix  is called the first Piola-Kirchhoff (PK1) stress.

Physical interpretation:  gives the force per unit undeformed area acting on plane
described by normal  in the undeformed configuration. It is asymmetric in general.
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Uniaxial bars:
1D strain  (relative length change)

1D stress ext  (applied force per unit area)

Recap: Strain and Stress

3D solids:
Strain tensors Biot, Green, etc.

 matrices encoding how the material is stretched along any direction.

e.g., Green  lets us compute squared length change in

any direction  as Green

Stress tensors: , , .

 matrices encoding the force per unit area (traction) acting on an
oriented slicing plane.

Cauchy stress tensor  gives the force per unit area (traction) acting on a
plane with normal  in the deformed configuration as .

1st Piola-Kirchoff stress  gives the force per unit area (traction)
acting on a plane with normal  in the reference configuration as .
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