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Challenge | - Make it stand!

e Questions:
o Given some (digital) geometric object, how can we determine if it stands? v/

o If it does not stand, how can we modify it, so that it does? v/

e More fundamentally:

o What does it mean for an object to stand? V/

o What is a geometric object? vV

o

What does it mean to modify a shape? vV

(©)

How do we find the best modification?

@)

How do we find the best modification efficiently?



Recap: Make it stand - Optimization

e \We can modify a given input shape to be in balance by minimizing the energy
J(V7 F) — Eeq(Va F) + WEeIastic(Va F)7
e This leads to an unconstrained optimization problem

min J(V, F)
|4

o where we have to solve for the unknown vertex coordinates V' of our mesh.




Recap: Unconstrained Optimization

minx f(X) Lglobal

x € R™ with n often very large (e.g., thousands of variables)
Global minimum x* : f(x*) < f(x) Vx

Local minimum x*: f(x*) < f(x) Vx e N/

In general (unless f is convex), we hope only for local minima.

We will assume f is at least C'.


https://en.wikipedia.org/wiki/Smoothness
https://en.wikipedia.org/wiki/Smoothness

Recap: Basic Gradient Descent Algorithm

Algorithm: basic_steepest_descent
Input:
f function to minimize
x initial guess
a step length
while not converged (f, x)
x=x—aVf
end



Derivative Checks

e Most common cause of failure in solving an optimization problem is mistakes in working
out derivatives and/or translating them to code.

e |n this course: strive for geometric approach for deriving gradients.

e You should always validate derivatives by comparing to finite differences:

Vi.da f(x—|—ed)2—€f(x—ed)

107*

e Plot relative error vs € on a log-log plot

o should see second-order convergence for
centered finite differences.
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Recap: Convergence to Local Minimum

e First-oder necessary condition: V f(x*) =0

o x* is a stationary point.
e Second-order necessary condition: dT Hd > 0 vd.
o where H = V2 f(x) is the Hessian of f.
o H must be positive semi-definite (eigenvalues \; >0 1 < ¢ < n).
e Second-order sufficient condition: dT H(x*)d > 0Vd # 0
o equivalently \; >0, 1<17<n.

o no longer a necessary condition.



Example

e minimize f(z,y) = 4(sin(z) —cos(y))? + 2?2 +y> +z + y



How far to Step?

e Once step direction d is chosen, a step length a > 0 must be picked.

e Finding the best o is a 1D optimization problem (regardless of n):
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Choosing a Step Size

e Small step sizes will take forever, while large steps can diverge:

4.

—aVf(z)
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e There is no clear range of step sizes to try for gradient descent (though problem-specific
knowledge may suggest one).

o Thankfully for the Newton-type methods we'll see later, a = 1 is an obvious first choice.

e We really need to adjust « as the algorithm proceeds...
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Line Search

e Goal
o given: search direction d

o find: & > 0 which decreases ¢(a) = f(x + ad)

o always possible if d is descent direction, since
¢'(0)=d-Vf(x) <O0.

o Strategies

o exact line search: minimize ¢(a) subject to a > 0

o rather costly, unless analytic (e.g. convex quadratic)
o usually convergence speed doesn'’t pay off (depends more on d)
o inexact line search: make sure that objective value decreases “sufficiently”
o minimize computational cost of line search (e.g. number of function/gradient evaluations)

o how much decrease is necessary to warrant “optimal” convergence?
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Armijo Condition

> 1

e Observation

o requiring f(x + ad) < f(x) does not guarentee convergence to local minimium.

e Armijo Condition
o f(x+ad) < f(x) +c1 ad- Vf(x) with damping coefficient ¢; € (0,1)
o identical to ¢(a) < ¢(0) + ac1¢'(0)
o interpretation: reduction should be proportional to a and slope at aa = 0

o also known as sufficient decrease condition
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Strong Wolfe Conditions

: >
0 a” !
e Strong Wolfe Conditions with ¢; € (0,1) and ¢; € (¢1,1)
1. sufficient decrease condition: f(x + ad) < f(x) + ¢; ad - Vf(x)
o identical to ¢(a) < ¢(0) + aci1¢'(0)

2. curvature condition: |[d - Vf(x + ad)| < ¢z|d - V f(x)|
o identical to |¢'(a)| < ¢2|@’'(0)] (make sure that ¢ is “flat enough” at )

o prevents slope at a to be too positive

o very general, often used in practice, e.g. with ¢; = 107* and ¢5 = 0.9
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Backtracking Line Search

e Simple, popular, and effective inexact line search based on the Armijo condition:

Algorithm: steepest_descent Algorithm: line_search
Input: Input: f, x, d
f function to minimize a=a
x initial guess while f(x + ad) > f(x) + ¢ ad - Vf:
while not converged (f, x) a = a/2 // Scale factor customizable
a = line_search(f,x,—Vf) end
x=x—aVf return o
end

e Still depends on a good selection for initial step length «.

o Can choose a based on o from previous steps.

e Aslong as a — 0 is forbidden, this algorithm will converge to a minimum.
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Example

e Backtracking Line Search with ¢; = 0.5

Algorithm: line_search

Input: f,x,d

a=auo

while f(x + ad) > f(x) +c1 ad - V{:
a=a/2

end

return a

16



e Chapter 3
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@ Springer

Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.
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https://lgg.epfl.ch/teaching/GC2021/reading/2006_Book_NumericalOptimization.pdf

True or False?

Backtracking line search will find the largest possible step
length that satisfies the Armijo condition.

(e (5 ae)
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True or False?

The performance of gradient descent with backtracking line
search depends on the initial step length.

(e (5 ae)
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True or False?

Gradient descent with exact line search is always more efficient
than with inexact line search.

(e (5 ae)

20



True or False?

If gradient descent has converged, we can be sure we have
found a local minimum.

(e (5 ae)
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Curious Fact

Ge{}Geer Q Search <@ Google Classroom> C{:? GeoGebra Classroom> Sign

Morley Action!

Author: Tim Brzezinski :

Topic: Angles, Equilateral Triangles

The applet below dynamically illustrates Morley's Triangle Theorem.
Feel free to move the triangle's white vertices anywhere you'd like each time before re-sliding the slider!

Source Wikipedia Article
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https://www.geogebra.org/u/tbrzezinski
https://www.geogebra.org/t/angle
https://www.geogebra.org/t/equilateral-triangle
https://www.geogebra.org/
https://www.geogebra.org/m/wwhDgwJd
https://en.wikipedia.org/wiki/Morley%27s_trisector_theorem
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Gradient Descent

e Gradient Descent
o search direction d = —V f(x)
o very simple, but often very slow

o convergence rate greatly depends on condition number of Hessian

e Instructive Example in R?
o f(x) = §(«? +~x2) withy>0andx*=(0,0)7T
o with exact line search, starting at (® = (v,1)7
2 = (L), 2y = (- L)k
o veryslowify>1lory<1

k k
e.g.v=100= 2\ = 100(2 )k, ol = (—2)*

after hundred iterations z ~ (13.53,0.1353)7 still far from z*

(©)

o


https://en.wikipedia.org/wiki/Condition_number

Example



Example



Newton’s Method

e Newton Direction
o search direction is Newton stepd = —V2f(x) "'V f(x) = —H'Vf
o often good choice in practice (if second derivatives available)

o convergence
o typically rapid if magnitude of 3rd derivative bounded

o quadratic convergence near x* (easy to get high-accuracy solution)

e Interpretations
1. Minimizer of second-order approximation f(x +d) =~ f(x +d) = f(z) + Vf(x)Td + +dTV2f(x)d
2. Solution of linearized optimality conditions Vf(x + d) =~ Vf(x + d) = Vf(x) + V2f(x)d = 0



1D Example

e Newton on logarithmic function
o f(z) = —log(x + 11) — log(11 — z) + 5, domain [—10, 10], z(® = 10



2D Example



Newton’'s Method with Line Search

e Aline search is still needed to ensure global convergence.

Algorithm: Newton's Method  Algorithm: line_search

Input: Input: f, x, d
f function to minimize a = 1.0 / No a needed!
x initial guess while f(x + ad) > f(x) +cad - V{:
while not converged (f,x) o = a/2 // Scale factor customizable
d=-H'Vf end
a = line_search(f,x,d) returna
x=x+ad
end

e o = 1is a natural initial step length.

o First try stepping to the optimum of the local quadratic approximation.

o Close to a minimum no backtracking will be necessary (o« = 1) and quadratic convergence kicks in.



Solving the Newton Equations

Hd =-Vf
e This will be the time and memory bottleneck of our simulation routines.

e Useful properties of the system:

o Sparse
o Symmetric

o Positive definite in neighborhood of local minima

e We can use efficient linear system solvers
o Conjugate gradient method (“Newton CG”)

o Sparse Cholesky factorization H = LL ", e.g., using CHOLMOD


https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Cholesky_decomposition
https://people.engr.tamu.edu/davis/suitesparse.html

Caveat: Indefiniteness

e Whenisd = —H 1V f really a descent direction?
o f(x+d)— f(x)=Vf-d=-Vf-HVf
o If v- Hv > 0 Vv # 0, then we are guaranteed —Vf- H-'Vf <0

o But if H has negative eigenvalues (indefinite), and if V f has a significant component in the corresponding
eigenspaces, then we can have —Vf- H='Vf > 0 (i.e., d is an ascent direction).

e Newton’s method is attracted to saddle points.

. 1.0 1.0
Both Hessian eigenvalues positive: One Hessian eigenvalue negative: One Hessian eigenvalue zero: inconclusive
guaranteed minimum. saddle point, not a minimum. (could be strong min, weak min, or saddle).

1.0

Video Lecture on Eigenvalues/Eigenvectors 10


https://www.3blue1brown.com/lessons/eigenvalues

Example: Indefiniteness

Non convex polynomial of degree 6
o minimize
o flz,y) = (3 —z+ay)?+(§ —z+2°)° + (& —z+x®)?
o initial point
o 20 = (4,1)T
o gradient
o Vf(z®) = (0,111)7

o Hessian

o V1) = (

0 27.75
27.75 610

@)

Newton step
o d=(—4,0)T
o not a descent direction since V f(z(®)”d = 0 (should be < 0)

11



Example

12



Example: Indefiniteness

e Physical example: a system of two compressed springs in 2D.

d, Hd, >0

Compressive
Force -F

Compressive é ®

Force F'

e d; is a direction of positive curvature in the central vertex’s energy landscape, while d, is a
direction of negative curvature.

13



Caveat: Indefiniteness

1.0 1.0 1.0
Both Hessian eigenvalues positive: One Hessian eigenvalue negative: One Hessian eigenvalue zero: inconclusive
guaranteed minimum. saddle point, not a minimum. (could be strong min, weak min, or saddle).

e To guarantee a descent direction, we must detect and modify indefinite H
H indefinite — H positive definite

e Brute force:
o Compute full eigendecomposition: H = QAQ'.

(®)

Modify eigenvalues to A with the rule X; = |\;| or A; = max(\;,e) (e > 0).
o Construct the modified Hessian: H = QAQ".

o very expensive, but more efficient methods exist (see Nocedal & Wright).



Newton’s Method

e Pros:

o Extremely rapid convergence close to optimum
o Generally good directions far away

o Easy backtracking line search: natural initial step length of o = 1.

e Cons:

o Difficulties encountered when H not positive definite:

o Newton's method will step towards saddle points if we do not modify it.

o Also, the most efficient linear solvers require a positive definite H.

o Can be difficult or slow to compute Newton direction

15



e Chapter 2,3

Reading
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Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.
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https://lgg.epfl.ch/teaching/GC2021/reading/2006_Book_NumericalOptimization.pdf

Turtles

17


https://biofriendlyplanet.com/turtle-shell-patterns/
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Quasi-Newton Methods

e Quasi-Newton Methods
o replace Hessian V2 f(x) with approximation B ~ V2 f(x)
o guaranteed to provide descent direction if B € ST

o alternative to Newton’s method if
o second derivatives are not available
o second derivatives are too expensive to compute
o rapid prototyping

o in combination with algorithmic differentiation

o superlinear convergence (typically better than gradient descent)

e |dea

o estimate second derivatives on-the-fly based on first derivative information



DFP Method

e Davidon-Fletcher-Powell formula (DFP)
o developed by Davidon in 1950s (because of frustration)

o computers were not stable and optimization crashed before termination
e Assume quadratic model at current iterate x;,

o notation: x;, = x*), Vf;, = Vf(x*), etc.

o mp(d) = fr+ Vfid+ $d"B;d

o search direction dy, = —B;'V f;

o next iterate X1 = X + ardy

e How to compute Bg,1?



DFP Method

e Assume quadratic model at current iterate x;,
o mk(d) = fk + Vfgd + %dTBkd
o search direction dy = —B,;1ka

o next iterate x5 1 = xi + ardg

e How to compute Bg,1?

o curvature can be measured by change of first derivative

o require that m1 matches first derivative at last two iterates,
l.e. mG_|_]_ (0) = ka_H_ and mG+1(—akdk) = ka

e Secant Equation: By sy =yr With s =xp1 —Xrandyr = Vi1 — Vi

e Curvature Condition: s;—fyk > 0 required because By positive definite



DFP Method

e Find s; and y;, satisfying curvature condition karyk >0

o guaranteed by Wolfe or strong Wolfe condition since
o y{sk > (co — 1)04ka;;de >0

e Find B;.1 by modifying By, as little as possible
o minimize ||B — Bgl||w

o subject to Bsy =y and B € S},

e DFP formula for By

Bii1 = (I — pryrsi)Br(I — prsiyr) + pryry: with

Pk =

Y. Sk



BFGS Method

e Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS)

o similar derivation as DFP

-1

o but directly deriving By,

instead of By
o minimize ||B™! — B;'||w subject to B, |,y = sy and B}, € ST,

o considered most effective of all quasi-Newton update formulas

e BFGS formula

o 13_1

k+1 — VkBlzlvk + p].;,S].cS%1 with V;, = (I _ pk}’ksf) and py, = 1

T
Y Sk

e Additional aspects

o choose Bglz problem specific or simply identity
o use line search for (strong) Wolfe conditions, or skip updates when curvature condition is violated

o BFGS has effective self-correcting properties



Summary

e Algorithms for unconstrained optimization

o Gradient Descent
o easy to implement

o linear convergence
o slow in practice, seldomly good choice
o Newton’s Method
o often good choice if second-order derivatives available
o quadratic convergence near z*
o Hessian modification for non-convex problems
o Quasi-Newton Methods
o BFGS generally preferred
o good for prototyping or if second-order derivatives not available

o superlinear/linear convergence (m = 1 related to CG method)



Reading

e Chapter 6

SPringgr Series in
"Perations Research

Numerical
Optimization

uonezundQ fesrrumy

@ Springer

Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.


https://lgg.epfl.ch/teaching/GC2021/reading/2006_Book_NumericalOptimization.pdf

Curious Fact

For any triangle, the feet of the secondary altitudes lie on a circle.

Source


https://x.com/theAlbertChern/status/1509329015437357060?s=20&t=GLa1N0uu3BDK54AWVSSrswd




