CS457 Geometric Computing

4A - Line Search

Mark Pauly

Geometric Computing Laboratory - EPFL

Exhibition

https://epfl-pavilions.ch/en/exhibitions/aetherocohedron-elba

Challenge I - Make it stand!

Questions:

- \circ Given some (digital) geometric object, how can we determine if it stands? \checkmark
- ∘ If it does not stand, how can we modify it, so that it does? ✓

More fundamentally:

- What does it mean for an object to stand?
- What is a geometric object?
- ∘ What does it mean to modify a shape? ✓
- How do we find the best modification?
- How do we find the best modification efficiently?

Recap: Make it stand - Optimization

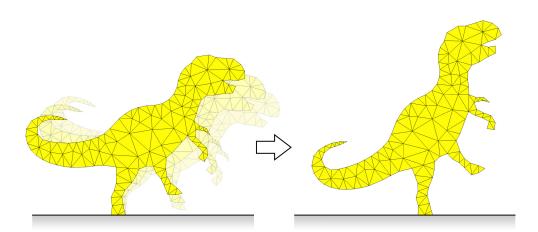
We can modify a given input shape to be in balance by minimizing the energy

$$J(V,F) = E_{ ext{eq}}(V,F) + \omega E_{ ext{elastic}}(V,F),$$

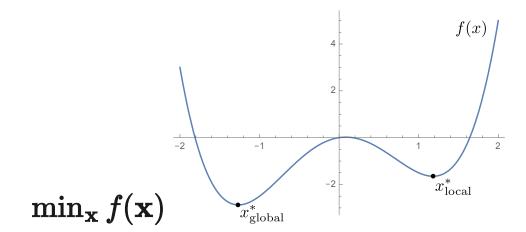
This leads to an unconstrained optimization problem

$$\min_{V} J(V,F)$$

 \circ where we have to solve for the unknown vertex coordinates V of our mesh.



Recap: Unconstrained Optimization



- $\mathbf{x} \in \mathbb{R}^n$ with n often very large (e.g., thousands of variables)
- ullet Global minimum $\mathbf{x}^*: f(\mathbf{x}^*) \leq f(\mathbf{x}) \ orall \mathbf{x}$
- ullet Local minimum $\mathbf{x}^*: f(\mathbf{x}^*) \leq f(\mathbf{x}) \ orall \mathbf{x} \in \mathcal{N}$
- In general (unless f is convex), we hope only for *local* minima.
- We will assume f is at least C^2 .

Recap: Basic Gradient Descent Algorithm

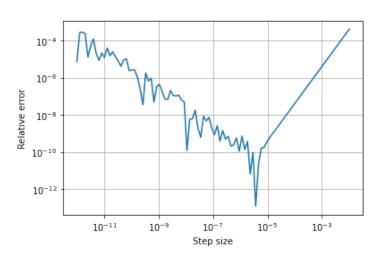
```
Algorithm: basic_steepest_descent Input: 
 f function to minimize 
 \mathbf{x} initial guess 
 \alpha step length 
 while not converged (f, \mathbf{x}) 
 \mathbf{x} = \mathbf{x} - \alpha \, \nabla f 
 end
```

Derivative Checks

- Most common cause of failure in solving an optimization problem is mistakes in working out derivatives and/or translating them to code.
- In this course: strive for geometric approach for deriving gradients.
- You should always validate derivatives by comparing to finite differences:

$$abla f \cdot \mathbf{d} pprox rac{f(\mathbf{x} + \epsilon \mathbf{d}) - f(\mathbf{x} - \epsilon \mathbf{d})}{2\epsilon}$$

- Plot relative error vs ϵ on a log-log plot
 - should see second-order convergence for centered finite differences.



Recap: Convergence to Local Minimum

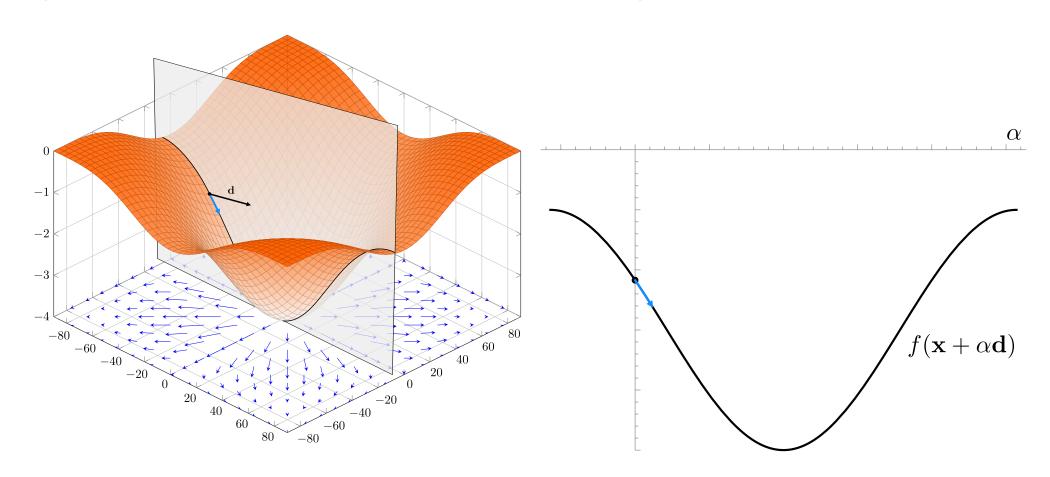
- First-oder necessary condition: $\nabla f(\mathbf{x}^*) = 0$
 - \circ **x*** is a stationary point.
- Second-order necessary condition: $\mathbf{d}^T H \mathbf{d} \geq 0 \ \forall \mathbf{d}$.
 - where $H = \nabla^2 f(\mathbf{x})$ is the Hessian of f.
 - *H* must be positive semi-definite (eigenvalues $\lambda_i \geq 0 \ 1 \leq i \leq n$).
- Second-order sufficient condition: $\mathbf{d}^T H(\mathbf{x}^*) \mathbf{d} > 0 \ \forall \mathbf{d} \neq 0$
 - \circ equivalently $\lambda_i > 0, \ 1 \leq i \leq n$.
 - no longer a necessary condition.

Example

ullet minimize $f(x,y)=4(\sin(x)-\cos(y))^2+x^2+y^2+x+y$

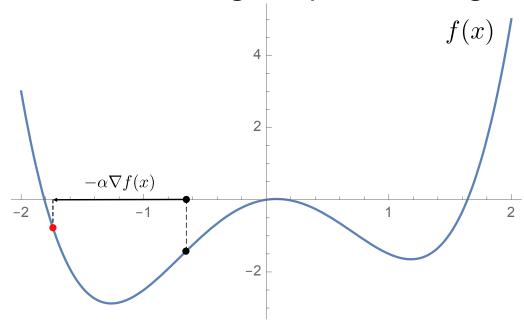
How far to Step?

- Once step direction **d** is chosen, a step length $\alpha > 0$ must be picked.
- Finding the best α is a 1D optimization problem (regardless of n):



Choosing a Step Size

• Small step sizes will take forever, while large steps can diverge:

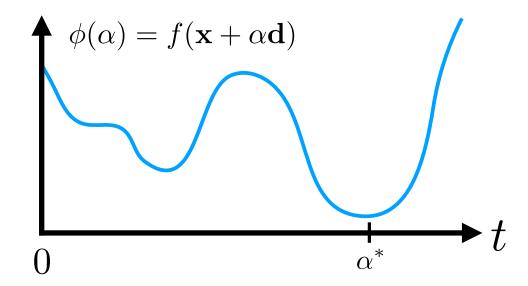


- There is no clear range of step sizes to try for gradient descent (though problem-specific knowledge may suggest one).
 - \circ Thankfully for the Newton-type methods we'll see later, $\alpha=1$ is an obvious first choice.
- We really need to adjust α as the algorithm proceeds...

Line Search

Goal

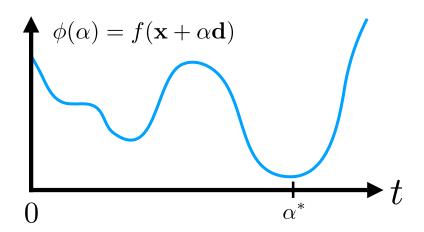
- given: search direction d
- \circ find: $\alpha > 0$ which decreases $\phi(\alpha) = f(\mathbf{x} + \alpha \mathbf{d})$
 - always possible if **d** is descent direction, since $\phi'(0) = \mathbf{d} \cdot \nabla f(\mathbf{x}) < 0$.



Strategies

- \circ **exact line search**: minimize $\phi(\alpha)$ subject to $\alpha>0$
 - rather costly, unless analytic (e.g. convex quadratic)
 - usually convergence speed doesn't pay off (depends more on d)
- inexact line search: make sure that objective value decreases "sufficiently"
 - o minimize computational cost of line search (e.g. number of function/gradient evaluations)
 - o how much decrease is necessary to warrant "optimal" convergence?

Armijo Condition



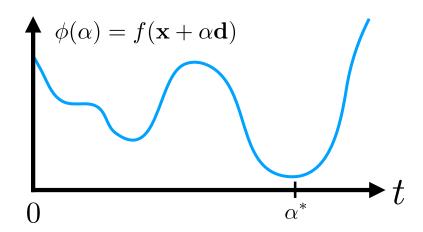
Observation

 \circ requiring $f(\mathbf{x} + \alpha \mathbf{d}) \leq f(\mathbf{x})$ does not guarentee convergence to local minimium.

Armijo Condition

- $cond f(\mathbf{x} + lpha \mathbf{d}) \leq f(\mathbf{x}) + c_1 \ lpha \ \mathbf{d} \cdot
 abla f(\mathbf{x}) \ ext{ with damping coefficient } c_1 \in (0,1)$
- \circ identical to $\phi(\alpha) \leq \phi(0) + \alpha c_1 \phi'(0)$
- \circ interpretation: reduction should be proportional to lpha and slope at lpha=0
- also known as sufficient decrease condition

Strong Wolfe Conditions



- Strong Wolfe Conditions with $c_1 \in (0,1)$ and $c_2 \in (c_1,1)$
 - 1. sufficient decrease condition: $f(\mathbf{x} + \alpha \mathbf{d}) \leq f(\mathbf{x}) + c_1 \alpha \mathbf{d} \cdot \nabla f(\mathbf{x})$
 - \circ identical to $\phi(\alpha) \leq \phi(0) + \alpha c_1 \phi'(0)$
 - 2. curvature condition: $|\mathbf{d} \cdot \nabla f(\mathbf{x} + \alpha \mathbf{d})| \leq c_2 |\mathbf{d} \cdot \nabla f(\mathbf{x})|$
 - \circ identical to $|\phi'(lpha)| \leq c_2 |\phi'(0)|$ (make sure that ϕ is "flat enough" at lpha)
 - \circ prevents slope at α to be too positive
 - $\circ~$ very general, often used in practice, e.g. with $c_1=10^{-4}$ and $c_2=0.9$

Backtracking Line Search

• Simple, popular, and effective inexact line search based on the Armijo condition:

```
Algorithm: steepest_descent Input: f \text{ function to minimize } \mathbf{x} \text{ initial guess} while not converged (f, \mathbf{x}) \alpha = \text{line\_search}(f, \mathbf{x}, -\nabla f) \mathbf{x} = \mathbf{x} - \alpha \, \nabla f end
```

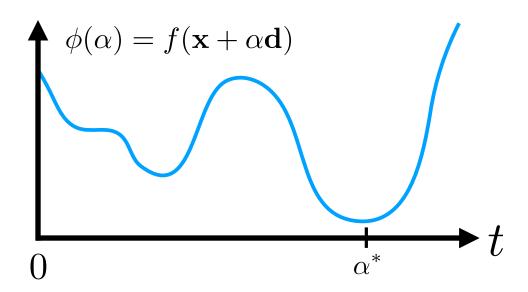
```
Algorithm: line_search  
Input: f, \mathbf{x}, \mathbf{d}  
\alpha = \overline{\alpha}  
while f(\mathbf{x} + \alpha \mathbf{d}) > f(\mathbf{x}) + c_1 \ \alpha \mathbf{d} \cdot \nabla f:  
\alpha = \alpha/2 // Scale factor customizable end  
return \alpha
```

- Still depends on a good selection for initial step length $\overline{\alpha}$.
 - \circ Can choose $\overline{\alpha}$ based on α from previous steps.
- As long as $\overline{\alpha} \to 0$ is forbidden, this algorithm will converge to a minimum.

Example

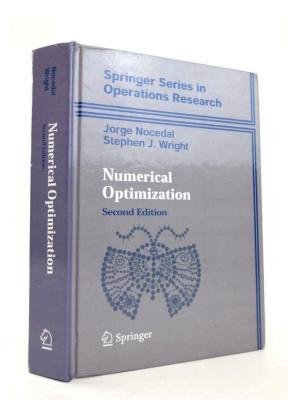
• Backtracking Line Search with $c_1=0.5$

```
Algorithm: line_search  
Input: f, \mathbf{x}, \mathbf{d}  
\alpha = \overline{\alpha}  
while f(\mathbf{x} + \alpha \mathbf{d}) > f(\mathbf{x}) + c_1 \ \alpha \ \mathbf{d} \cdot \nabla f:  
\alpha = \alpha/2  
end  
return \alpha
```



Reading

• Chapter 3



Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.

Backtracking line search will find the largest possible step length that satisfies the Armijo condition.

A: True

The performance of gradient descent with backtracking line search depends on the initial step length.

A: True

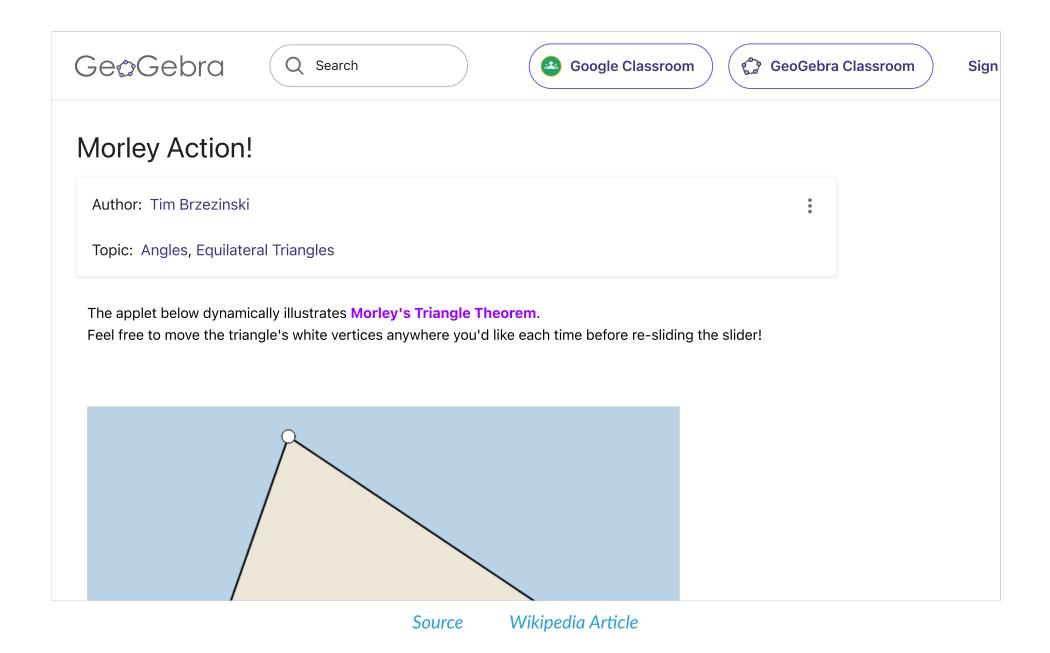
Gradient descent with exact line search is always more efficient than with inexact line search.

A: True

If gradient descent has converged, we can be sure we have found a local minimum.

A: True

Curious Fact



CS457 Geometric Computing

4B - Newton's Method

Mark Pauly

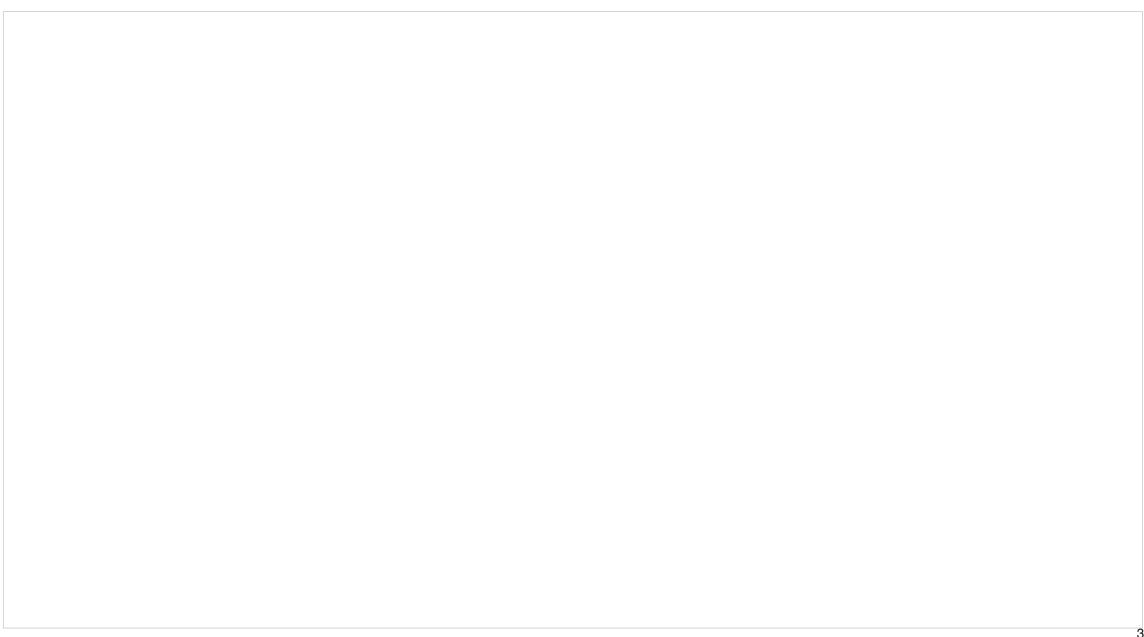
Geometric Computing Laboratory - EPFL

Gradient Descent

Gradient Descent

- \circ search direction $\mathbf{d} = -\nabla f(\mathbf{x})$
- very simple, but often very slow
- convergence rate greatly depends on condition number of Hessian
- Instructive Example in \mathbb{R}^2
 - $f(\mathbf{x}) = \frac{1}{2}(x_1^2 + \gamma x_2^2)$ with $\gamma > 0$ and $\mathbf{x}^* = (0,0)^T$
 - \circ with exact line search, starting at $x^{(0)}=(\gamma,1)^T$ $x_1^{(k)}=\gamma(rac{\gamma-1}{\gamma+1})^k, x_2^{(k)}=(-rac{\gamma-1}{\gamma+1})^k$
 - \circ very slow if $\gamma\gg 1$ or $\gamma\ll 1$
 - $_{\circ}$ e.g. $\gamma=100 \Rightarrow x_{1}^{(k)}=100(rac{99}{101})^{k}, x_{2}^{(k)}=(-rac{99}{101})^{k}$
 - \circ after hundred iterations $x pprox (13.53, 0.1353)^T$ still far from x^*

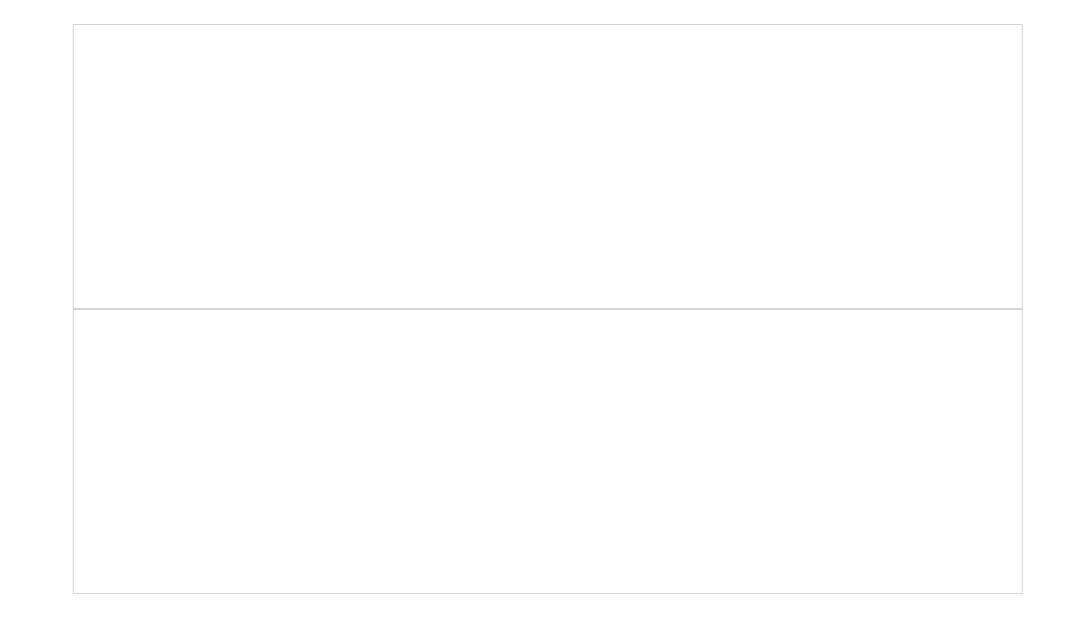
Example



Example

 $\gamma=10$

 $\gamma = 1$



Newton's Method

Newton Direction

- \circ search direction is **Newton step d** = $-\nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x}) = -H^{-1} \nabla f(\mathbf{x})$
- often good choice in practice (if second derivatives available)
- convergence
 - typically rapid if magnitude of 3rd derivative bounded
 - \circ quadratic convergence near \mathbf{x}^* (easy to get high-accuracy solution)

Interpretations

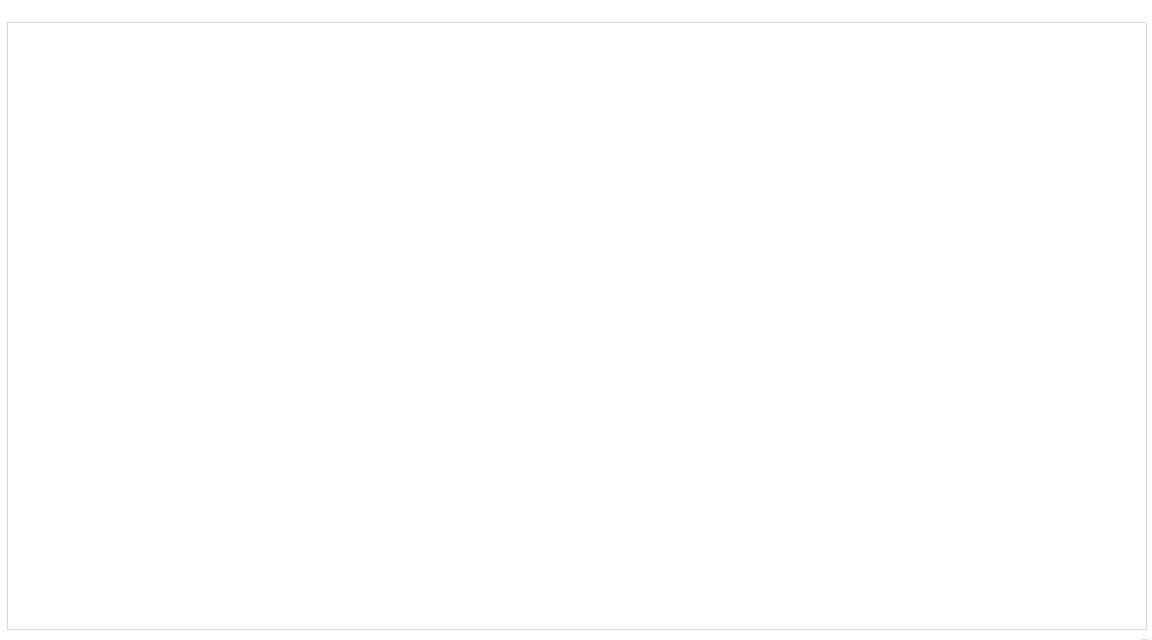
- 1. Minimizer of second-order approximation $f(\mathbf{x} + \mathbf{d}) \approx \hat{f}(\mathbf{x} + \mathbf{d}) = f(x) + \nabla f(\mathbf{x})^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \nabla^2 f(\mathbf{x}) \mathbf{d}$
- 2. Solution of linearized optimality conditions $\nabla f(\mathbf{x} + \mathbf{d}) \approx \nabla \hat{f}(\mathbf{x} + \mathbf{d}) = \nabla f(\mathbf{x}) + \nabla^2 f(\mathbf{x}) \mathbf{d} = 0$

1D Example

Newton on logarithmic function

$$f(x) = -\log(x+11) - \log(11-x) + 5$$
, domain $[-10,10], x^{(0)} = 10$

2D Example



Newton's Method with Line Search

A line search is still needed to ensure global convergence.

```
Algorithm: Newton's Method Input: 
 f function to minimize 
 \mathbf{x} initial guess 
while not converged (f, \mathbf{x}) 
 \mathbf{d} = -H^{-1}\nabla f 
 \alpha = \text{line\_search}(f, \mathbf{x}, \mathbf{d}) 
 \mathbf{x} = \mathbf{x} + \alpha \, \mathbf{d} 
end
```

```
Algorithm: line_search  
Input: f, \mathbf{x}, \mathbf{d}  
\alpha = 1.0 // No \overline{\alpha} needed!  
while f(\mathbf{x} + \alpha \mathbf{d}) > f(\mathbf{x}) + c \ \alpha \mathbf{d} \cdot \nabla f:  
\alpha = \alpha/2 // Scale factor customizable end  
return \alpha
```

- $\overline{\alpha} = 1$ is a natural initial step length.
 - First try stepping to the optimum of the local quadratic approximation.
 - \circ Close to a minimum no backtracking will be necessary ($\alpha = 1$) and quadratic convergence kicks in.

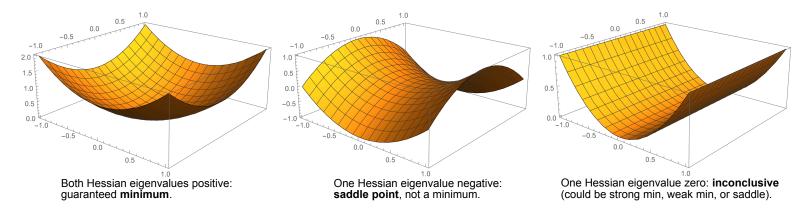
Solving the Newton Equations

$$H\mathbf{d} = -\nabla f$$

- This will be the time and memory bottleneck of our simulation routines.
- Useful properties of the system:
 - Sparse
 - Symmetric
 - Positive definite in neighborhood of local minima
- We can use efficient linear system solvers
 - Conjugate gradient method ("Newton CG")
 - \circ Sparse Cholesky factorization $H = LL^{\top}$, e.g., using CHOLMOD

Caveat: Indefiniteness

- When is $\mathbf{d} = -H^{-1}\nabla f$ really a descent direction?
 - $f(\mathbf{x} + \mathbf{d}) f(\mathbf{x}) pprox
 abla f \cdot \mathbf{d} = abla f \cdot H^{-1}
 abla f$
 - \circ If $\mathbf{v}\cdot H\mathbf{v}>0 \ \forall \mathbf{v}
 eq 0$, then we are guaranteed $-\nabla f\cdot H^{-1}\nabla f<0$
 - But if H has negative eigenvalues (indefinite), and if ∇f has a significant component in the corresponding eigenspaces, then we can have $-\nabla f \cdot H^{-1} \nabla f > 0$ (i.e., \mathbf{d} is an *ascent* direction).
- Newton's method is attracted to saddle points.



Example: Indefiniteness

- Non convex polynomial of degree 6
 - minimize

$$f(x,y) = (rac{3}{2} - x + xy)^2 + (rac{9}{4} - x + xy^2)^2 + (rac{21}{8} - x + xy^3)^2$$

• initial point

$$x^{(0)} = (4,1)^T$$

• gradient

$$\circ \
abla f(x^{(0)}) = (0,111)^T$$

Hessian

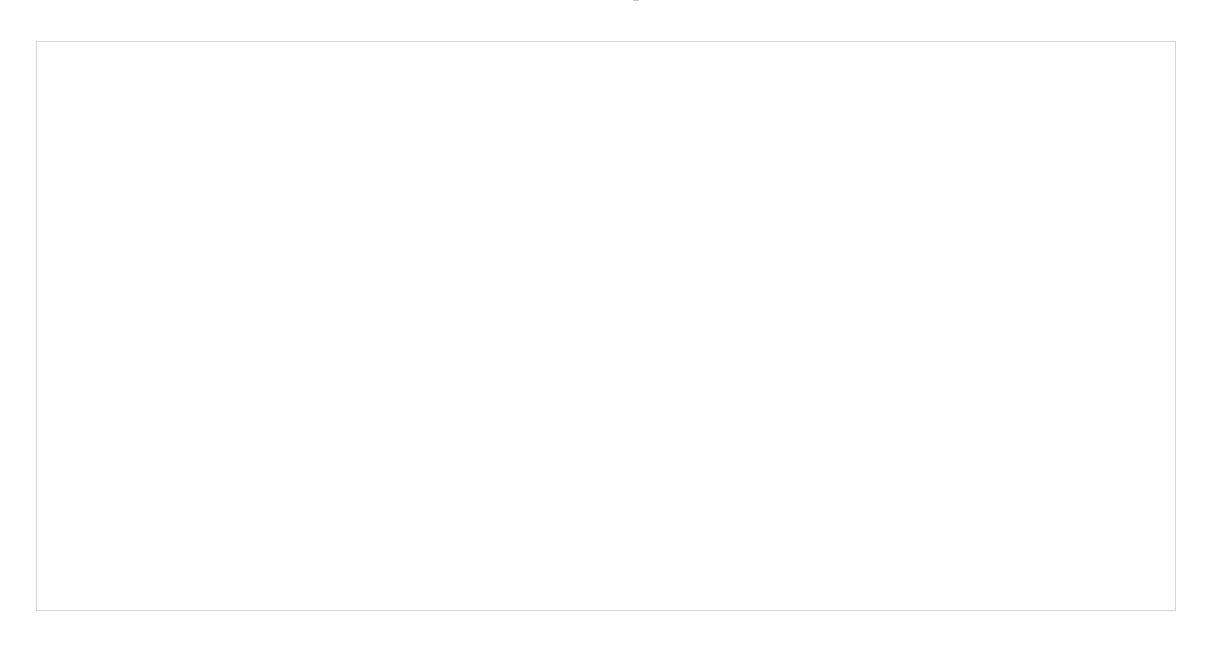
$$\circ \
abla^2 f(x^{(0)}) = egin{pmatrix} 0 & 27.75 \ 27.75 & 610 \end{pmatrix}$$

Newton step

$$\mathbf{d} = (-4,0)^T$$

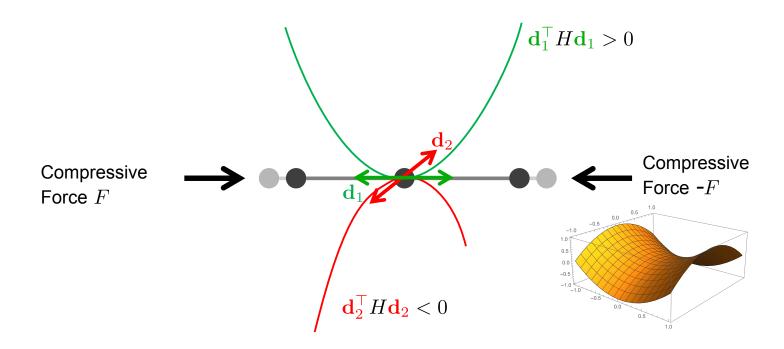
 \circ not a descent direction since $abla f(x^{(0)})^T \mathbf{d} = 0$ (should be < 0)

Example



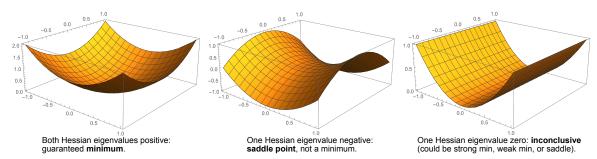
Example: Indefiniteness

• Physical example: a system of two compressed springs in 2D.



• \mathbf{d}_1 is a direction of positive curvature in the central vertex's energy landscape, while \mathbf{d}_2 is a direction of negative curvature.

Caveat: Indefiniteness



ullet To guarantee a descent direction, we must detect and modify indefinite H

H indefinite ightarrow $ilde{H}$ positive definite

- Brute force:
 - \circ Compute full eigendecomposition: $H = Q\Lambda Q^{\top}$.
 - \circ Modify eigenvalues to $\tilde{\Lambda}$ with the rule $\tilde{\lambda}_i = |\lambda_i|$ or $\tilde{\lambda}_i = \max(\lambda_i, \epsilon)$ $(\epsilon > 0)$.
 - \circ Construct the modified Hessian: $ilde{H} = Q ilde{\Lambda} Q^{ op}.$
 - o very expensive, but more efficient methods exist (see Nocedal & Wright).

Newton's Method

• Pros:

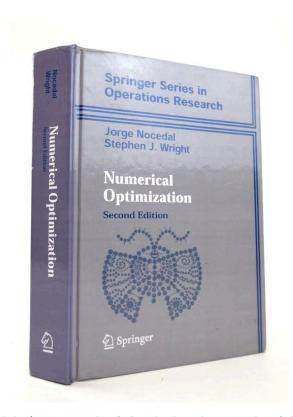
- Extremely rapid convergence close to optimum
- Generally good directions far away
- Easy backtracking line search: natural initial step length of $\overline{\alpha} = 1$.

Cons:

- Difficulties encountered when *H* not positive definite:
 - Newton's method will step towards saddle points if we do not modify it.
 - \circ Also, the most efficient linear solvers require a positive definite H.
- Can be difficult or slow to compute Newton direction

Reading

• Chapter 2,3



Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.

Turtles

Source

CS457 Geometric Computing

4C - Quasi-Newton Methods

Mark Pauly

Geometric Computing Laboratory - EPFL

Quasi-Newton Methods

Quasi-Newton Methods

- \circ replace Hessian $abla^2 f(\mathbf{x})$ with approximation $B pprox
 abla^2 f(\mathbf{x})$
- \circ guaranteed to provide descent direction if $B \in S^n_{++}$
- alternative to Newton's method if
 - second derivatives are not available
 - second derivatives are too expensive to compute
 - rapid prototyping
 - in combination with algorithmic differentiation
- superlinear convergence (typically better than gradient descent)

• Idea

estimate second derivatives on-the-fly based on first derivative information

DFP Method

- Davidon-Fletcher-Powell formula (DFP)
 - developed by Davidon in 1950s (because of frustration)
 - computers were not stable and optimization crashed before termination
- Assume quadratic model at current iterate \mathbf{x}_k
 - \circ notation: $\mathbf{x}_k = \mathbf{x}^{(k)},
 abla f_k =
 abla f(\mathbf{x}^{(k)})$, etc.
 - $egin{aligned} egin{aligned} egin{aligned} egin{aligned} m_k(\mathbf{d}) &= f_k +
 abla f_k^T \mathbf{d} + rac{1}{2} \mathbf{d}^T B_k \mathbf{d} \end{aligned}$
 - \circ search direction $\mathbf{d}_k = -B_k^{-1}
 abla f_k$
 - \circ next iterate $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$
- How to compute B_{k+1} ?

DFP Method

- Assume quadratic model at current iterate \mathbf{x}_k
 - $egin{aligned} egin{aligned} egin{aligned} egin{aligned} m_k(\mathbf{d}) &= f_k +
 abla f_k^T \mathbf{d} + rac{1}{2} \mathbf{d}^T B_k \mathbf{d} \end{aligned}$
 - \circ search direction $\mathbf{d}_k = -B_k^{-1}
 abla f_k$
 - \circ next iterate $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$
- How to compute B_{k+1} ?
 - curvature can be measured by change of first derivative
 - \circ require that m_{k+1} matches first derivative at last two iterates, i.e. $abla m_{k+1}(0) =
 abla f_{k+1}$ and $abla m_{k+1}(-lpha_k \mathbf{d}_k) =
 abla f_k$
- ullet Secant Equation: $B_{k+1}\mathbf{s}_k=\mathbf{y}_k$ with $\mathbf{s}_k=\mathbf{x}_{k+1}-\mathbf{x}_k$ and $\mathbf{y}_k=
 abla f_{k+1}abla f_k$
- Curvature Condition: $\mathbf{s}_k^T \mathbf{y}_k > 0$ required because B_{k+1} positive definite

DFP Method

- Find \mathbf{s}_k and \mathbf{y}_k satisfying curvature condition $\mathbf{s}_k^T\mathbf{y}_k>0$
 - guaranteed by Wolfe or strong Wolfe condition since

$$\mathbf{v}_k^T\mathbf{s}_k \geq (c_2-1)lpha_k
abla f_k^T\mathbf{d}_k > 0$$

- Find B_{k+1} by modifying B_k as little as possible
 - \circ minimize $||B-B_k||_W$
 - \circ subject to $B\mathbf{s}_k=\mathbf{y}_k$ and $B\in S^n_{++}$
- **DFP formula** for B_{k+1}

$$B_{k+1} = (I -
ho_k \mathbf{y}_k \mathbf{s}_k^T) B_k (I -
ho_k \mathbf{s}_k \mathbf{y}_k^T) +
ho_k \mathbf{y}_k \mathbf{y}_k^T \quad ext{with} \quad
ho_k = rac{1}{\mathbf{y}_k^T \mathbf{s}_k}$$

BFGS Method

Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS)

- similar derivation as DFP
- \circ but directly deriving B_{k+1}^{-1} instead of B_{k+1}
- \circ minimize $||B^{-1}-B_k^{-1}||_W$ subject to $B_{k+1}^{-1}\mathbf{y}_k=\mathbf{s}_k$ and $B_{k+1}^{-1}\in S_{++}^n$
- considered most effective of all quasi-Newton update formulas

BFGS formula

$$\circ~B_{k+1}^{-1} = V_k B_k^{-1} V_k +
ho_k \mathbf{s}_k \mathbf{s}_k^T \quad ext{ with } V_k = (I -
ho_k \mathbf{y}_k \mathbf{s}_k^T) ext{ and }
ho_k = rac{1}{\mathbf{y}_k^T \mathbf{s}_k}$$

Additional aspects

- choose B_0^{-1} : problem specific or simply identity
- o use line search for (strong) Wolfe conditions, or skip updates when curvature condition is violated
- BFGS has effective self-correcting properties

Summary

Algorithms for unconstrained optimization

Gradient Descent

- easy to implement
- linear convergence
- slow in practice, seldomly good choice

Newton's Method

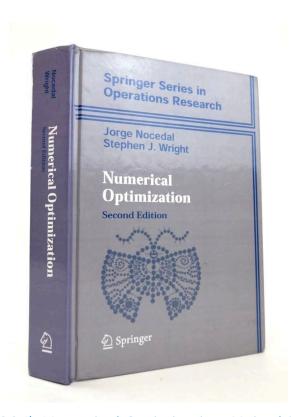
- often good choice if second-order derivatives available
- \circ quadratic convergence near x^*
- Hessian modification for non-convex problems

Quasi-Newton Methods

- BFGS generally preferred
- o good for prototyping or if second-order derivatives not available
- \circ superlinear/linear convergence (m = 1 related to CG method)

Reading

• Chapter 6



Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.

Curious Fact

For any triangle, the feet of the secondary altitudes lie on a circle.

