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Exhibition

https://epfl-pavilions.ch/en/exhibitions/aetherocohedron-elba
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https://epfl-pavilions.ch/en/exhibitions/aetherocohedron-elba


Challenge I - Make it stand!

Questions:
Given some (digital) geometric object, how can we determine if it stands? ✔️

If it does not stand, how can we modify it, so that it does? ✔️

More fundamentally:
What does it mean for an object to stand? ✔️

What is a geometric object? ✔️

What does it mean to modify a shape? ✔️

How do we find the best modification?

How do we find the best modification efficiently?
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Recap: Make it stand - Optimization

We can modify a given input shape to be in balance by minimizing the energy

eq elastic

This leads to an unconstrained optimization problem

where we have to solve for the unknown vertex coordinates  of our mesh.
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Recap: Unconstrained Optimization
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 with  often very large (e.g., thousands of variables)

Global minimum 

Local minimum   

In general (unless  is convex), we hope only for local minima.

We will assume  is at least .
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https://en.wikipedia.org/wiki/Smoothness
https://en.wikipedia.org/wiki/Smoothness


Recap: Basic Gradient Descent Algorithm

Algorithm: basic_steepest_descent
Input:

 function to minimize
 initial guess
 step length

while not converged

end
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Derivative Checks

Most common cause of failure in solving an optimization problem is mistakes in working
out derivatives and/or translating them to code.

In this course: strive for geometric approach for deriving gradients.

You should always validate derivatives by comparing to finite differences:

Plot relative error vs  on a log-log plot
should see second-order convergence for
centered finite differences.
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Recap: Convergence to Local Minimum

First-oder necessary condition: 
 is a stationary point.

Second-order necessary condition: .
where  is the Hessian of .

 must be positive semi-definite (eigenvalues ).

Second-order sufficient condition: 
equivalently .

no longer a necessary condition.
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Example

minimize 
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How far to Step?

 

Once step direction  is chosen, a step length  must be picked.

Finding the best  is a 1D optimization problem (regardless of ):
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Choosing a Step Size

Small step sizes will take forever, while large steps can diverge:
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There is no clear range of step sizes to try for gradient descent (though problem-specific
knowledge may suggest one).

Thankfully for the Newton-type methods we’ll see later,  is an obvious first choice.

We really need to adjust  as the algorithm proceeds…
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Goal
given: search direction 

find:  which decreases 

always possible if  is descent direction, since
.

Line Search

Strategies
exact line search: minimize  subject to 

rather costly, unless analytic (e.g. convex quadratic)

usually convergence speed doesn’t pay off (depends more on )

inexact line search: make sure that objective value decreases “sufficiently”

minimize computational cost of line search (e.g. number of function/gradient evaluations)

how much decrease is necessary to warrant “optimal” convergence?
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Armijo Condition

Observation
requiring  does not guarentee convergence to local minimium.

Armijo Condition
 with damping coefficient 

identical to 

interpretation: reduction should be proportional to  and slope at 

also known as sufficient decrease condition
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Strong Wolfe Conditions

Strong Wolfe Conditions with  and 
1. sufficient decrease condition: 

identical to 

2. curvature condition: 

identical to  (make sure that  is “flat enough” at )

prevents slope at  to be too positive

very general, often used in practice, e.g. with  and 
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Backtracking Line Search

Algorithm: steepest_descent
Input:

 function to minimize
 initial guess

while not converged
line_search

end

Algorithm: line_search
Input: , , 

while :
 // Scale factor customizable

end
return 

Simple, popular, and effective inexact line search based on the Armijo condition:

Still depends on a good selection for initial step length .
Can choose  based on  from previous steps.

As long as  is forbidden, this algorithm will converge to a minimum.
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Example

Algorithm: line_search
Input: , , 

while :

end
return 

Backtracking Line Search with 

 

16



Reading

Chapter 3

Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.
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https://lgg.epfl.ch/teaching/GC2021/reading/2006_Book_NumericalOptimization.pdf


True or False?

Backtracking line search will find the largest possible step
length that satisfies the Armijo condition.

A: True B: False

18



True or False?

The performance of gradient descent with backtracking line
search depends on the initial step length.

A: True B: False
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True or False?

Gradient descent with exact line search is always more efficient
than with inexact line search.

A: True B: False
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True or False?

If gradient descent has converged, we can be sure we have
found a local minimum.

A: True B: False
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Curious Fact

  

The applet below dynamically illustrates Morley's Triangle Theorem.

Feel free to move the triangle's white vertices anywhere you'd like each time before re-sliding the slider!

Morley Action!

Author: Tim Brzezinski

Topic: Angles, Equilateral Triangles

Google Classroom GeoGebra Classroom Sign Search

Source Wikipedia Article
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https://www.geogebra.org/u/tbrzezinski
https://www.geogebra.org/t/angle
https://www.geogebra.org/t/equilateral-triangle
https://www.geogebra.org/
https://www.geogebra.org/m/wwhDgwJd
https://en.wikipedia.org/wiki/Morley%27s_trisector_theorem
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Gradient Descent

Gradient Descent
search direction 

very simple, but often very slow

convergence rate greatly depends on  of Hessiancondition number

Instructive Example in 
 with  and 

with exact line search, starting at 

very slow if  or 

e.g. 

after hundred iterations  still far from 
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https://en.wikipedia.org/wiki/Condition_number


Example
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Example
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Newton’s Method

Newton Direction
search direction is Newton step 

often good choice in practice (if second derivatives available)

convergence

typically rapid if magnitude of 3rd derivative bounded

quadratic convergence near  (easy to get high-accuracy solution)

Interpretations
1. Minimizer of second-order approximation 

2. Solution of linearized optimality conditions 
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1D Example

Newton on logarithmic function
, domain , 

6



2D Example
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Newton’s Method with Line Search

Algorithm: Newton's Method
Input:

 function to minimize
 initial guess

while not converged

line_search

end

Algorithm: line_search
Input: , , 

 // No  needed!
while :

 // Scale factor customizable
end
return 

A line search is still needed to ensure global convergence.

 is a natural initial step length.
First try stepping to the optimum of the local quadratic approximation.

Close to a minimum no backtracking will be necessary ( ) and quadratic convergence kicks in.
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Solving the Newton Equations

This will be the time and memory bottleneck of our simulation routines.

Useful properties of the system:
Sparse

Symmetric

Positive definite in neighborhood of local minima

We can use efficient linear system solvers
 (“Newton CG”)Conjugate gradient method

 , e.g., using Sparse Cholesky factorization CHOLMOD
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https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Cholesky_decomposition
https://people.engr.tamu.edu/davis/suitesparse.html


Caveat: Indefiniteness

When is  really a descent direction?

If , then we are guaranteed 

But if  has negative eigenvalues (indefinite), and if  has a significant component in the corresponding
eigenspaces, then we can have  (i.e.,  is an ascent direction).

Newton’s method is attracted to saddle points.

Both Hessian eigenvalues positive:
guaranteed minimum.

One Hessian eigenvalue negative:
saddle point, not a minimum.

One Hessian eigenvalue zero: inconclusive
(could be strong min, weak min, or saddle).

Video Lecture on Eigenvalues/Eigenvectors 10

https://www.3blue1brown.com/lessons/eigenvalues


Example: Indefiniteness

Non convex polynomial of degree 6
minimize

initial point

gradient

Hessian

Newton step

not a descent direction since  (should be )
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Example
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Example: Indefiniteness

Physical example: a system of two compressed springs in 2D.

Compressive
Force

Compressive
Force -

 is a direction of positive curvature in the central vertex’s energy landscape, while  is a
direction of negative curvature.
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Caveat: Indefiniteness

Both Hessian eigenvalues positive:
guaranteed minimum.

One Hessian eigenvalue negative:
saddle point, not a minimum.

One Hessian eigenvalue zero: inconclusive
(could be strong min, weak min, or saddle).

To guarantee a descent direction, we must detect and modify indefinite 

 indefinite  positive definite

Brute force:
Compute full eigendecomposition: 

Modify eigenvalues to  with the rule  or 

Construct the modified Hessian: 

very expensive, but more efficient methods exist (see Nocedal & Wright).
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Newton’s Method

Pros:
Extremely rapid convergence close to optimum

Generally good directions far away

Easy backtracking line search: natural initial step length of .

Cons:
Difficulties encountered when  not positive definite:

Newton’s method will step towards saddle points if we do not modify it.

Also, the most efficient linear solvers require a positive definite 

Can be difficult or slow to compute Newton direction
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Reading

Chapter 2,3

Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.
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https://lgg.epfl.ch/teaching/GC2021/reading/2006_Book_NumericalOptimization.pdf


Turtles

Source
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https://biofriendlyplanet.com/turtle-shell-patterns/
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Quasi-Newton Methods

Quasi-Newton Methods
replace Hessian  with approximation 

guaranteed to provide descent direction if 

alternative to Newton’s method if

second derivatives are not available

second derivatives are too expensive to compute

rapid prototyping

in combination with algorithmic differentiation

superlinear convergence (typically better than gradient descent)

Idea
estimate second derivatives on-the-fly based on first derivative information
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DFP Method

Davidon–Fletcher–Powell formula (DFP)
developed by Davidon in 1950s (because of frustration)

computers were not stable and optimization crashed before termination

Assume quadratic model at current iterate 
notation: , etc.

search direction 

next iterate 

How to compute 
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DFP Method

Assume quadratic model at current iterate 

search direction 

next iterate 

How to compute 
curvature can be measured by change of first derivative

require that  matches first derivative at last two iterates,
i.e.   and 

Secant Equation:  with  and 

Curvature Condition:  required because  positive definite
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DFP Method

Find  and  satisfying curvature condition 
guaranteed by Wolfe or strong Wolfe condition since

 

Find  by modifying  as little as possible
minimize 

subject to  and 

DFP formula for 

with
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BFGS Method

Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)
similar derivation as DFP

but directly deriving  instead of 

minimize  subject to  and 

considered most effective of all quasi-Newton update formulas

BFGS formula
 with  and 

Additional aspects
choose : problem specific or simply identity

use line search for (strong) Wolfe conditions, or skip updates when curvature condition is violated

BFGS has effective self-correcting properties
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Summary

Algorithms for unconstrained optimization
Gradient Descent

easy to implement

linear convergence

slow in practice, seldomly good choice

Newton’s Method

often good choice if second-order derivatives available

quadratic convergence near 

Hessian modification for non-convex problems

Quasi-Newton Methods

BFGS generally preferred

good for prototyping or if second-order derivatives not available

superlinear/linear convergence (  related to CG method)
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Reading

Chapter 6

Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.
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https://lgg.epfl.ch/teaching/GC2021/reading/2006_Book_NumericalOptimization.pdf


Curious Fact

For any triangle, the feet of the secondary altitudes lie on a circle.

Source
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https://x.com/theAlbertChern/status/1509329015437357060?s=20&t=GLa1N0uu3BDK54AWVSSrswd



