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Challenge III: Asymptotic Gridshell

Design and fabricate a complex curved surface from straight flexible strips.
Specifically: Vertically intersecting strips, intersections at (approximately) right angles.

Is this even possible? If so, for which surfaces?

Geometry  Computational Design  Fabrication

Source: Eike Schling 2

https://eikeschling.com/2016/09/06/asymptotic-gridshell/


How can we model curves and surfaces?
Which surfaces allow an asymptotic gridshell?

How can we efficiently compute such surfaces?

We will look at:
(Discrete) differential geometry

Optimization of minimal surfaces

How can we design the gridshell layout?
How can we extract the grid lines?

How can we explore design alternatives?

We will look at:
Curve tracing on surfaces

Interactive modeling

Challenge III: Asymptotic Gridshell
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Overview for Today

Differential Geometry of parametric curves
Tangent vector, normal vector

Arc length parameterization

Curvature, osculating circle, discrete curvature

A first application: Curve smoothing

Differential Geometry of parametric surfaces
tangent space, metric, first fundamental form

normal curvature

principal curvatures

Mean & Gaussian curvature
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Reading

of 201

Polygon Mesh Processing, Chapter 3
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Geometry Representations

How can we define a unit circle centered at the origin?

Implicit Representation
Kernel of function , i.e. 

Unit Circle:  or 

Explicit (or Parametric)
Range of function , i.e. 

Unit Circle: , 
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Parametric Representation

Parametric representation 

Curve is defined as image of interval  under parameterization function .

What shape does this curve have?

7



Parametric Representation

Parametric representation 
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Parametric Representation

Guess the shape of the curve!
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Parametric Representation
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Parametric Curve Properties

A parametric curve  is
simple:  is injective (no self-intersections)

differentiable:  is defined for all 

regular:  for all 

Which of the following are simple, differentiable, regular?
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Re-parameterization

We can represent the same geometry with different parameter functions.

For example, the same curve is defined for  by the functions

 and 

In other words, the image of  under  and  is equivalent.

However: !
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Re-parameterization

We can map from  to  using a re-parameterization function .
In our example, we have  with .

If , then .
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Re-parameterization

We can map from  to  using a re-parameterization function .
In our example, we have  with .

If , then .

Parameter intervals do not need to be identical.
For example, if  and  define the same curve, we can define a re-
parameterization function  such that .
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Discrete Explicit Representation

Sample the parameter interval , e.g., at parameters .

Then the polyline through the points  is a piecewise linear approximation of the
curve .

With increasing , the polyline converges to the curve.
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Length of a Curve

How can we measure length of a continuous curve?

Example: What is the length of a parabola , ?

We know how to measure the length of a polyline!

Let  and 

Polyline chord length
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Length of a Curve

Polyline chord length

Curve arc length 
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Length of a Curve

Example: Length of Circle
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Length of a Curve

Example: Length of Parabola
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Tangent & Normal

Parametric representation of planar curve .

First derivative defines a tangent vector.

The curve normal vector is

Rot
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Tangent & Normal

Example: .
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Curve as Particle Trajectory

Curve parameter  is time.

 defines the position of particle at time .

Tangent  defines the velocity vector at time .

Length (magnitude) of tangent vector is particle speed.

Second derivative  is acceleration.
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Curve as Particle Trajectory: Example

For , the two curves

and

define the same particle path.

However, particles travel with different speed!
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Arc Length Parameterization

We see that a curve can be parameterized in different ways. But is there a unique,
canonical way to parameterize a curve?

Yes! It’s called arc length parameterization.

Parameterize curve  over  such that length from  to  is equal to .
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Arc Length Parameterization

Intuitively, think about a rope of length  that is bend (but not stretched or
compressed!) to assume the shape of the curve.

Curves parameterized with respect to arc length have some useful properties.
Unit speed: 

Orthogonality: 

Wikipedia: Arc Length 25

https://en.wikipedia.org/wiki/Arc_length


Curvature

Curvature is a measure of how much the curve deviates from a straight line.

This can be quantified by looking at how much the curve normal varies as we traverse
the curve.

The curve normal vector is Rot .

The Gauss map of the curve  maps the parameter interval  to the unit circle:
.

This means that for every  we obtain a point on the unit circle defined by the
curve normal  at point .
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Gauss Map
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Curvature

Let
 be a small interval around parameter ,

 be the length of the curve segment ,

 be the length of the corresponding segment of the Gauss map.

Then the magnitude of the curvature at point  is defined as

If a curve is parameterized by arc length, then curvature is simply the magnitude of the
second derivative

For general parametrizations 

28



Curvature

The osculating circle at point  is the circle tangent
to the curve at  that best approximates the curve
locally.

Its center is given as , where  is the signed
curvature and  is the normal at .

Orientation of normal is important!

Its radius is the inverse of the absolute curvature:

Wikipedia: Osculating Circle 29

https://en.wikipedia.org/wiki/Osculating_circle


Curvature
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Curvature

Source
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https://twitter.com/Yugemaku/status/1591734499611738113


Discrete Curvature

How can we define curvature on a polyline?

Continuous definition does not makes sense. Curvature would be zero on line segment
and infinite at vertices. Polyline is not differentiable!

Consider polyline as approximation of a smooth curve.

Approximate osculating circle by circle passing through three adjacent points.

Aside: Prove that any three distinct points define a unique circle!
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Discrete Curvature
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A First Application: Curve Smoothing

Variant A: Curvature Flow
For each vertex, compute the discrete osculating circle

Move every vertex towards the center of circle

Iterate!

Variant B: Laplacian Smoothing
For each vertex, compute the average of its two neighbors

Move every vertex towards the average

Iterate!
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Discrete Laplacian Curve Smoothing

curve is rescaled to original bounding box after each iteration
number of iterations per frame increases towards end of video
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Overview

Differential Geometry of parametric curves

tangent space, metric, first fundamental form

normal curvature

principal curvatures

mean & Gaussian curvature

Differential Geometry of parametric surfaces
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https://en.wikipedia.org/wiki/Differential_geometry_of_surfaces


Parametric Surfaces

Continuous surface

Normal vector

Assume regular parameterization
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Curves on Surface

A curve  in the -plane defines a curve on the surface :
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Tangent Vectors of Curves on Surface

Curve on surface 

Tangent vector to curve

Jacobian matrix  defines mapping of tangent vectors from the domain to the
surface: 

Tangent plane is formed by linear combinations of  and 
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Angles on Surface

What is the angle of intersection of two curves  and  intersecting at ?

Two tangents  and 

Compute inner product
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First Fundamental Form

First fundamental form

Defines inner product on tangent space

Wikipedia: First Fundamental Form 7

https://en.wikipedia.org/wiki/First_fundamental_form


First Fundamental Form

First fundamental form allows to measure…

Angles

Length

Area

Wikipedia: First Fundamental Form 8

https://en.wikipedia.org/wiki/First_fundamental_form


Example: Unit Sphere

Spherical parameterization
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Example: Unit Sphere

Tangent vectors

First fundamental form
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Length of equator 
 and 

 and 

Example: Unit Sphere
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Area of sphere

Example: Unit Sphere
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Example: Unit Sphere

source
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https://twitter.com/jmitani/status/869901833317122048?s=20&t=cy9wP74pvJXBI1_1UN60nQ


Let  be a tangent vector at .

Normal Curvature
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Let  be a tangent vector at .

, , and  define a normal plane. The
intersection of this plane with the surface
yields a curve , called a normal section.

Normal Curvature
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Let  be a tangent vector at .

, , and  define a normal plane. The
intersection of this plane with the surface
yields a curve , called a normal section.

Normal curvature  is defined as the
curvature of the normal section  at the
point .

Normal Curvature
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If we write , the normal
curvature can be computed as

with the second fundamental form

Normal Curvature
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Normal Curvature

Let  be a tangent vector at  and assume that  and  are
orthonormal.

We can plot  as a function of the tangent angle 
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Surface Curvature(s)

Principal curvatures

Maximum curvature 

Minimum curvature 

planes
of principal
curvatures

normal
vector

tangent
plane

Corresponding principal directions ,  are orthogonal.

Can be computed from eigenvectors of the shape operator

(see handout for details).

19

https://en.wikipedia.org/wiki/Principal_curvature


Surface Curvature(s)

Euler theorem: 
Proof: See handout

 Gaussian curvature

Example: Torus
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https://en.wikipedia.org/wiki/Gaussian_curvature


A point  on the surface is called

Classification

elliptic, if 

hyperbolic, if 

parabolic, if 

umbilic, if 

Slide 10 from 04B
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Asymptotic Directions

Which curves on the surface have zero normal curvature?

Euler theorem: 

Solutions for 

Observation: Only if  can we have  for some .

For a point on the surface, a direction defined by  with
 is called an asymptotic direction.
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Asymptotic Curves

A curve on the surface that is at each point tangent to an
asymptotic direction is called an asymptotic curve.

Asymptotic curves only bend in the tangent plane of the
surface, but not in the orthogonal direction.
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