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Challenge Ill: Asymptotic Gridshell

e Design and fabricate a complex curved surface from straight flexible strips.

o Specifically: Vertically intersecting strips, intersections at (approximately) right angles.

o Is this even possible? If so, for which surfaces?

Geometry Computational Design Fabrication

Source: Eike Schling


https://eikeschling.com/2016/09/06/asymptotic-gridshell/

Challenge lll: Asymptotic Gridshell

e How can we model curves and surfaces? e We will look at:

o Which surfaces allow an asymptotic gridshell? o (Discrete) differential geometry

o How can we efficiently compute such surfaces? o Optimization of minimal surfaces
e How can we design the gridshell layout? e We will look at:

o How can we extract the grid lines? o Curve tracing on surfaces

o How can we explore design alternatives? o Interactive modeling



Overview for Today

e Differential Geometry of parametric curves

o Tangent vector, normal vector

o

Arc length parameterization

(©)

Curvature, osculating circle, discrete curvature

o

A first application: Curve smoothing

e Differential Geometry of parametric surfaces
o tangent space, metric, first fundamental form
o normal curvature
o principal curvatures

Mean & Gaussian curvature

(©)
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Geometry Representations

e How can we define a unit circle centered at the origin?

e Implicit Representation

o Kernel of function F : R? — R, i.e. {x € R? | F(x) = 0}

o Unit Circle: F(z,y) = Vz2 +y? —lor F(z,y) =22 +¢y* — 1
o Explicit (or Parametric)

o Range of function x : [a,b] C R — R?,i.e. {x(t) | t € [a, b]}

o Unit Circle: x(¢) = [Z;Eg} = ELI;((?)]t € [0, 2n]



Parametric Representation

e Parametric representation x : [a,b] C R — R?

0= o)

e Curve is defined as image of interval [a, b] under parameterization function x.

e What shape does this curve have?

x(t) = [w(t)] - [Sin(zt)

y(t)| = cos(t>]’ ¢ 10,27



Parametric Representation
a:(t)] _ lsin(2t)

e Parametric representation x(t) =
i x(t) [yu) cos(t

], t €0,2n|

e y~. y(t) = cos(t)

x(t) = stsin(2 t)




Parametric Representation
e Guess the shape of the curve!

(1) = sin®(t) ]

[%(13 cos(t) — 5 cos(2t) — 2 cos(3t) — cos(4t))

x(t) = sin3(t) y(t) = 11_6 (13 cos(t) -5 cos(2t) — 2 cos(3t) — cos(4 1))
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Parametric Representation

1
y(t) = — (13 cos(t) - 5cos(2t) -2 cos(3t) - cos(4t)
16
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x(t) = Lin3(t)}




Parametric Curve Properties

e A parametric curve x(t) is
o simple: x(t) is injective (no self-intersections)
o differentiable: x' (t) is defined for all ¢t € [a, D]
o regular: x'(t) # 0 forall t € [a, b]

e Which of the following are simple, differentiable, regular?
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Re-parameterization

We can represent the same geometry with different parameter functions.

For example, the same curve is defined for t € |0, 1] by the functions
sin(4mv/t)
cos(2mv/t) .

In other words, the image of |0, 1] under x; and x3 is equivalent.

However: x; (t) # x2(t)!

sin(47t)
cos(2mt)

X1 (t) = [

] and % (t) =
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Re-parameterization

e \We can map from x; to x5 using a re-parameterization function w.
o In our example, we have u: [0, 1] — [0, 1] with u(t) = v/%.
o If x1(t) = c(t), then x2(t) = c(u(t)).

c(u(®)

-1.0

W /




Re-parameterization

e \We can map from x; to x5 using a re-parameterization function w.
o In our example, we have u: [0, 1] — [0, 1] with u(t) = V/%.
o If x1(t) = c(t), then x2(t) = c(u(t)).

e Parameter intervals do not need to be identical.

o For example, if x1: [a,b] — R? and x»: [c, d] — R? define the same curve, we can define a re-
parameterization function u: [a, b] — [c, d] such that x;(t) = xa(u(t)).
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Discrete Explicit Representation

b—a
n

e Sample the parameter interval [a, b], e.g., at parameterst; = a +i=%, i =0,...,n.

e Then the polyline through the points x(¢;) is a piecewise linear approximation of the
curve x.

e With increasing n, the polyline converges to the curve.

AN
>
7
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Length of a Curve

How can we measure length of a continuous curve?

Example: What is the length of a parabola y = z2, z € [0, 1]?

We know how to measure the length of a polyline!

Let ¢; = a + tAt and x; = x(t;)

Polyline chord length

Lr =) |laxi]

AX; = || X1 — X4

16



e Polyline chord length

L =Y laxil = Y| 5

e Curve arc length (At — 0)

AXZ'

Length of a Curve

AX; = || X411 — x4

L= [Cxac= [y( \/ (L) a

17



Length of a Curve

e Example: Length of Circle

() = [sin(t)] () = [ co.s(t) ]

cos(t) — sin(t)

L= / Ix/(t)]dt = / \/ )
L:/O% \/cosz(t)—l—sinz(t)dt:/Ozﬂldtz27r




e Example: Length of Parabola

Length of a Curve

x(t) = [21t]

1
L:/ V1 + 424t
0

1
L= Z(2\f5 + sinh™!(2)) ~ 1.47894
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Tangent & Normal
m(t)]

e Parametric representation of planar curve x(t) = [

e First derivative defines a tangent vector.

e dx(t) B dz(t)/dt
t=x'(t) := dt [dy(t)/dt]

e The curve normal vector is

t
n=— Rot(QO)w

y(t)|

20



Tangent & Normal
cos(t)]

* Example: x(t) = (1 + cos(t)) [sin(t)



Curve
Tangent
Normal
Point
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Curve as Particle Trajectory

Curve parameter t is time.

x (t) defines the position of particle at time t.

Tangent x’(t) defines the velocity vector at time t.
Length (magnitude) of tangent vector is particle speed.

Second derivative x"(t) is acceleration.

Curve

Normal
Point

22



Curve as Particle Trajectory: Example

e Fort € [0,1], the two curves

2
=[] o 0= )
define the same particle path.
e However, particles travel with different speed!
o [x;(®)] =1
o [[x3(t)ll = v/(—2tsin(t?))? + (2t cos(¢?))? = 2[t]

23



Arc Length Parameterization

e We see that a curve can be parameterized in different ways. But is there a unique,
canonical way to parameterize a curve?

e Yes! It's called arc length parameterization.

e Parameterize curve x(s) over [0, L] such that length from x(0) to x(s) is equal to s.

[ Ix @l = s
0

24



Arc Length Parameterization

e Intuitively, think about a rope of length L = [ ||x’||d¢ that is bend (but not stretched or
compressed!) to assume the shape of the curve.

Ny

e Curves parameterized with respect to arc length have some useful properties.
o Unit speed: ||x'(s)|| =1
o Orthogonality: x'(s) - x"(s) =0

Wikipedia: Arc Length 25


https://en.wikipedia.org/wiki/Arc_length

Curvature

Curvature is a measure of how much the curve deviates from a straight line.

This can be quantified by looking at how much the curve normal varies as we traverse

the curve.

The curve normal vector is n = Rot(90) -

The Gauss map of the curve x(t) maps the parameter interval |a, b] to the unit circle:
n:|a,bl — Sl

This means that for every t € |a, b] we obtain a point on the unit circle defined by the
curve normal n(t) at point x(t).

26



Gauss Map
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Curvature

o Let

o ) = [t — €, t+ €| be asmall interval around parameter t,
o Ix(€) be the length of the curve segment x(£2),

o Ia(€) be the length of the corresponding segment of the Gauss map.
e Then the magnitude of the curvature at point x(t) is defined as

In(€)
—>0l()

&(t)] = lim

e |f a curve is parameterized by arc length, then curvature is simply the magnitude of the
second derivative

t'(s) = x"(s) = (s)n(s) — |k(s)| = [x"(s)

e For general parametrizations k(t) = ”x'|(|i,>(<t’)‘ﬁ§t)“
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Curvature

e The osculating circle at point x is the circle tangent

to the curve at x that best approximates the curve
locally.

e Its center is given as x — =-n, where & is the signed
curvature and n is the normal at x.

o Orientation of normal is important!

e |ts radius is the inverse of the absolute curvature:
1

r—=—
||

Wikipedia: Osculating Circle

29


https://en.wikipedia.org/wiki/Osculating_circle

Curvature



Osculating Circle
Tangent

Normal

Curve

Point
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Curvature

Source

31


https://twitter.com/Yugemaku/status/1591734499611738113

Discrete Curvature

e How can we define curvature on a polyline?

e Continuous definition does not makes sense. Curvature would be zero on line segment
and infinite at vertices. Polyline is not differentiable!

e Consider polyline as approximation of a smooth curve.
e Approximate osculating circle by circle passing through three adjacent points.

e Aside: Prove that any three distinct points define a unique circle!

32



Discrete Curvature



Discrete Osculating Circle
Osculating Circle
Discrete Points

Polyline
Curve
Point
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A First Application: Curve Smoothing

e Variant A: Curvature Flow

o For each vertex, compute the discrete osculating circle
o Move every vertex towards the center of circle

o lterate!

e Variant B: Laplacian Smoothing

o For each vertex, compute the average of its two neighbors
o Move every vertex towards the average

o |terate!

34



Discrete Laplacian Curve Smoothing

‘
Q
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curve is rescaled to original bounding box after each iteration
number of iterations per frame increases towards end of video
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Overview

e Differential Geometry of parametric curves

o Differential Geometry of parametric surfaces

o tangent space, metric, first fundamental form
o normal curvature
o principal curvatures

mean & Gaussian curvature

©)


https://en.wikipedia.org/wiki/Differential_geometry_of_surfaces

Parametric Surfaces

e Continuous surface
"z (u,v) ]

X (ua ’U) — y(ua ’U)
|2(u,v)

e Normal vector

Xu XXy

n —
I X %]

e Assume regular parameterization

Xy XXy7#0



Curves on Surface

e Acurve (u(t),v(t)) in the uv-plane defines a curve on the surface x(u, v):

x(t) = x(u(t),v(t))




Tangent Vectors of Curves on Surface

e Curve onsurface x(t) = x(u(t),v(t))

e Tangent vector to curve

) = 20— D (o (u(e), v(e)

B ox du N ox dv
- Ou  dt Ov dt

ul
— [x,uax,'v] [ ,]

v
— Ju’

e Jacobian matrix J € R3*? defines mapping of tangent vectors from the domain to the
surface: u’ — x’

e Tangent plane is formed by linear combinations of x ,, and x ,,



Angles on Surface

e What is the angle of intersection of two curves ¢; and ¢4 intersecting at x?

e Two tangents t; and t»
t; = oaux, + Bix,y
e Compute inner product

t; ty = cosOty|[t2]] = (X, +Pix.)" (a2xy + Box.,)
T
— ([X,U7x,’v] lgi]) [x,uax,’u] [(;z] — [alaﬂl]‘]—r‘] [az

T T
x,u x,u x,u x,v:| [(12]

T T
Xu Xp Xy X,y

— (ala/Bl) |:



First Funhdamental Form

e First fundamental form

T T

E F XXy XX

I — = — JTJ
F G xT T

,uxav X

e Defines inner product on tangent space

(5] B = ] [

Wikipedia: First Fundamental Form


https://en.wikipedia.org/wiki/First_fundamental_form

First Funhdamental Form

First fundamental form allows to measure...

e Angles

e Length

e Area

tit,

ds =

dA

<(a17181)7 (042,,82»
Eajas + F (o182 + a2p1) + GB1Be

V/ ((du, dv), (du, dv))
V Edu? + 2F dudv + G dv?

v/ det(I) dudv

V EG — F2?dudv

Wikipedia: First Fundamental Form


https://en.wikipedia.org/wiki/First_fundamental_form

Example: Unit Sphere

e Spherical parameterization

EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE
cos u sin v
x(u,v) = [sinusinv|, (u,v)€[0,27) x [0,7)
COS v




e Tangent vectors

Example: Unit Sphere

X (u,v) =

e First fundamental form

- |

E F
F G

— sinusin v|
CcoS u Sin v

|

0

X p(u,v) =

[COS U COS V|

SIn U COS v

— sin v

10



Example: Unit Sphere

e Length of equator x(¢, 7/2) B EEEmEmEmE=s
o y(t) =tandu/(t) =1

o v(t) =w/2andv'(t) =0 EE

27 2T
/ 1ds = / \/Eu,zt—l—2Fu,tv,t—|—Gv,2tdt
0 0

2
= / sin v dt
0

= 2wsinv = 27



e Area of sphere

Example: Unit Sphere

78 2 ™ 27
// 1dA:// VEG — F2dudv
0 Jo 0 Jo
T 27
// sin vdu dv
0 Jo
47
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Example: Unit Sphere

13


https://twitter.com/jmitani/status/869901833317122048?s=20&t=cy9wP74pvJXBI1_1UN60nQ

Normal Curvature

e Let t be a tangent vector at x.

14



Normal Curvature

e Let t be a tangent vector at x.

e x, n, and t define a normal plane. The
intersection of this plane with the surface
yields a curve x(t), called a normal section.

15



Normal Curvature

e Let t be a tangent vector at x.

e x, n, and t define a normal plane. The
intersection of this plane with the surface
yields a curve x(t), called a normal section.

e Normal curvature k,(t) is defined as the
curvature of the normal section x(¢) at the
point x(u, v).

16



Normal Curvature

e |f we write t = ax, + bx ,, the normal
curvature can be computed as

(a,b) M (a,b) " _ ea’+2fab+ gb*
(a,0)I(a,b)"  Ea?+2Fab+ Gb?

Kn(t) =

with the second fundamental form

I — !6 f] — |:x,uuTn x,uan:|

T T
f g Xup N X N

17



Normal Curvature

e Let t(¢) = cos ¢x , + sin ¢x , be a tangent vector at x and assume that x , and x ,, are
orthonormal.

e We can plot «,(t(¢)) as a function of the tangent angle ¢

kn (@)

18



Principal curvatures

Surface Curvature(s)

e Maximum curvature k; = maxy i, (9)

e Minimum curvature k3 = ming K, (¢)

e Corresponding principal directions e, e are orthogonal.

e Can be computed from eigenvectors of the shape operator

o (see handout for details).

S=I1'11

planes
of principal
curvatures

tangent
plane

19


https://en.wikipedia.org/wiki/Principal_curvature

Surface Curvature(s)

e Euler theorem: K, (¢) = k1 cos? @ + Kkosin? ¢

o Proof: See handout
e Gaussian curvature K = Ky * Ko

e Example: Torus

20


https://en.wikipedia.org/wiki/Gaussian_curvature

Classification

A point x on the surface is called
o elliptic, if K > 0

e hyperbolic, if K < 0
e parabolic,if K =0

o umbilic, if k1 = Ko

Caveat: Indefiniteness

e Whenis d = —H 'V f really a descent direction?
* f(x+d)— f(x)~Vf-d=-Vf -H'Vf
e If v- Hv > 0 Vv # 0, then we are guaranteed —Vf- H'Vf <0

e But if H has negative eigenvalues (indefinite), and if V f has a significant component in
the corresponding eigenspaces, then we can have —Vf- H-'Vf > 0 (i.e,, d is an ascent
direction)...

¢ Newton’s method is attracted to saddle points.

i i
guarantoed minimum. saddle point, not a minimum. (could be strong min, weak min, or saddle).

Slide 10 from 04B

21



Asymptotic Directions

Which curves on the surface have zero normal curvature?

Euler theorem: k,, (¢) = k1 cos? ¢ + kysin? ¢

Solutions for k,(¢) =0

K1 . K1
cosf = ,/1— , sinf =+ :
K1 — R2 K1 — R2

Observation: Only if K < 0 can we have &, (¢) = 0 for some ¢.

For a point on the surface, a direction defined by t(¢) = cos ¢x ,, + sin ¢x , with
kn (@) = 0 is called an asymptotic direction.
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Asymptotic Curves

e A curve on the surface that is at each point tangent to an
asymptotic direction is called an asymptotic curve.

e Asymptotic curves only bend in the tangent plane of the
surface, but not in the orthogonal direction.

e

| »‘t'ﬁ\&.
Y

e

7
¢
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