CS457 Geometric Computing

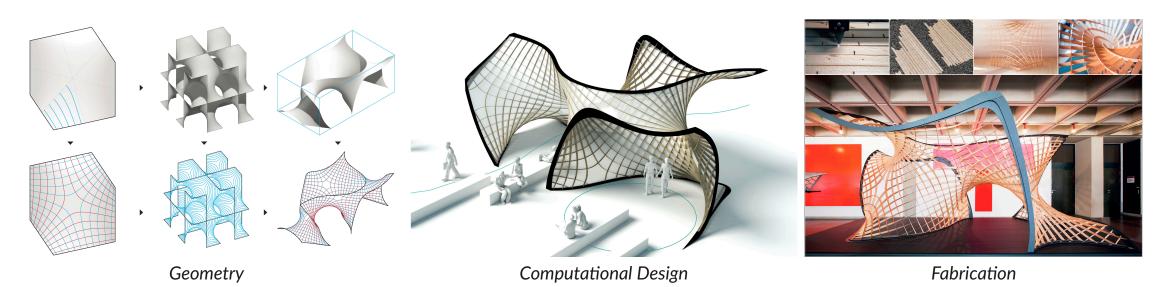
10A - Differential Geometry of Curves

Mark Pauly

Geometric Computing Laboratory - EPFL

Challenge III: Asymptotic Gridshell

- Design and fabricate a complex curved surface from straight flexible strips.
 - Specifically: Vertically intersecting strips, intersections at (approximately) right angles.
 - Is this even possible? If so, for which surfaces?



Source: Eike Schling

Challenge III: Asymptotic Gridshell

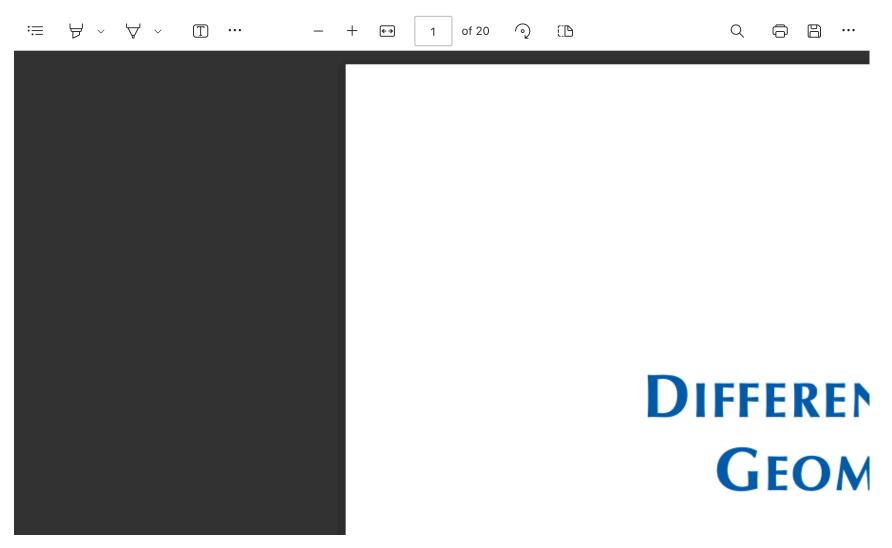
- How can we model curves and surfaces?
 - Which surfaces allow an asymptotic gridshell?
 - How can we efficiently compute such surfaces?
- How can we design the gridshell layout?
 - How can we extract the grid lines?
 - How can we explore design alternatives?

- We will look at:
 - (Discrete) differential geometry
 - Optimization of minimal surfaces
- We will look at:
 - Curve tracing on surfaces
 - Interactive modeling

Overview for Today

- Differential Geometry of parametric curves
 - Tangent vector, normal vector
 - Arc length parameterization
 - Curvature, osculating circle, discrete curvature
 - A first application: Curve smoothing
- Differential Geometry of parametric surfaces
 - tangent space, metric, first fundamental form
 - normal curvature
 - principal curvatures
 - Mean & Gaussian curvature

Reading



Polygon Mesh Processing, Chapter 3

Geometry Representations

- How can we define a unit circle centered at the origin?
- Implicit Representation
 - \circ Kernel of function $F:\mathbb{R}^2\mapsto\mathbb{R}$, i.e. $\{\mathbf{x}\in\mathbb{R}^2\mid F(\mathbf{x})=0\}$
 - \circ Unit Circle: $F(x,y) = \sqrt{x^2 + y^2} 1$ or $F(x,y) = x^2 + y^2 1$
- Explicit (or Parametric)
 - \circ Range of function $\mathbf{x}:[a,b]\subset\mathbb{R}\mapsto\mathbb{R}^2$, i.e. $\{\mathbf{x}(t)\mid t\in[a,b]\}$
 - \circ Unit Circle: $\mathbf{x}(t) = egin{bmatrix} x(t) \ y(t) \end{bmatrix} = egin{bmatrix} \sin(t) \ \cos(t) \end{bmatrix}$, $t \in [0, 2\pi]$

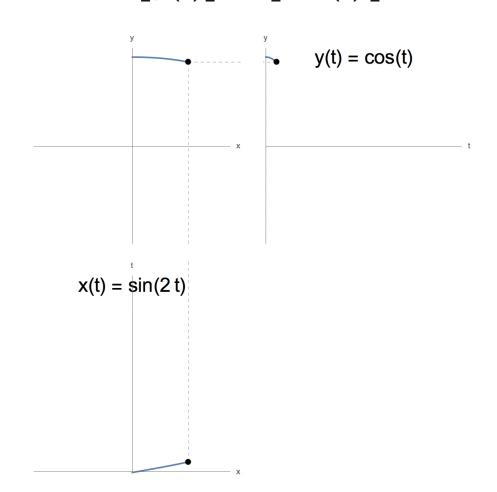
ullet Parametric representation $\mathbf{x}:[a,b]\subset\mathbb{R}\mapsto\mathbb{R}^2$

$$\mathbf{x}(t) = egin{bmatrix} x(t) \ y(t) \end{bmatrix}$$

- Curve is defined as image of interval [a, b] under parameterization function \mathbf{x} .
- What shape does this curve have?

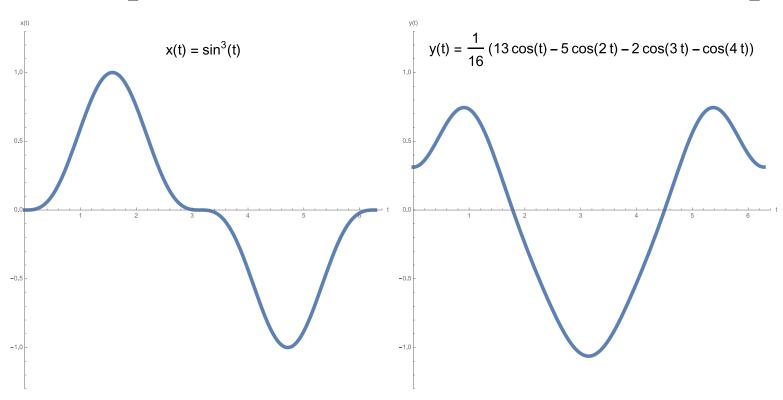
$$\mathbf{x}(t) = egin{bmatrix} x(t) \ y(t) \end{bmatrix} = egin{bmatrix} \sin(2t) \ \cos(t) \end{bmatrix}, \quad t \in [0, 2\pi]$$

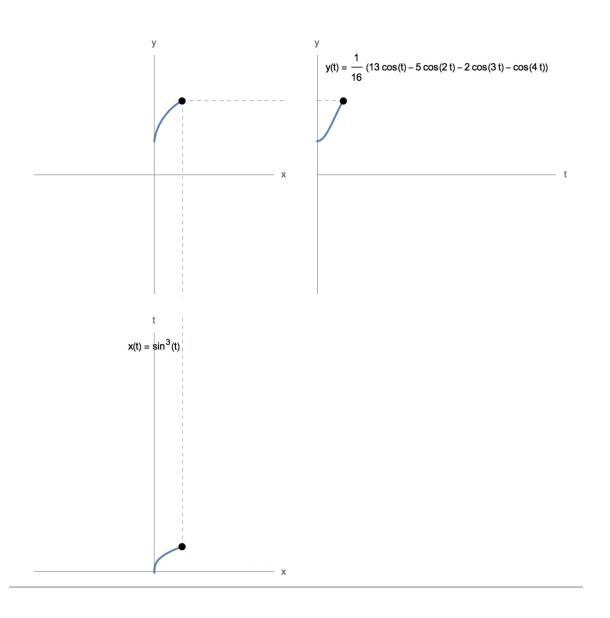
ullet Parametric representation $\mathbf{x}(t) = egin{bmatrix} x(t) \ y(t) \end{bmatrix} = egin{bmatrix} \sin(2t) \ \cos(t) \end{bmatrix}, \quad t \in [0, 2\pi]$



Guess the shape of the curve!

$$\mathbf{x}(t) = egin{bmatrix} \sin^3(t) \ rac{1}{16}(13\cos(t) - 5\cos(2t) - 2\cos(3t) - \cos(4t)) \end{bmatrix}$$





Parametric Curve Properties

- A parametric curve $\mathbf{x}(t)$ is
 - \circ *simple*: $\mathbf{x}(t)$ is injective (no self-intersections)
 - \circ differentiable: $\mathbf{x}'(t)$ is defined for all $t \in [a,b]$
 - \circ regular: $\mathbf{x}'(t) \neq \mathbf{0}$ for all $t \in [a,b]$
- Which of the following are simple, differentiable, regular?

Re-parameterization

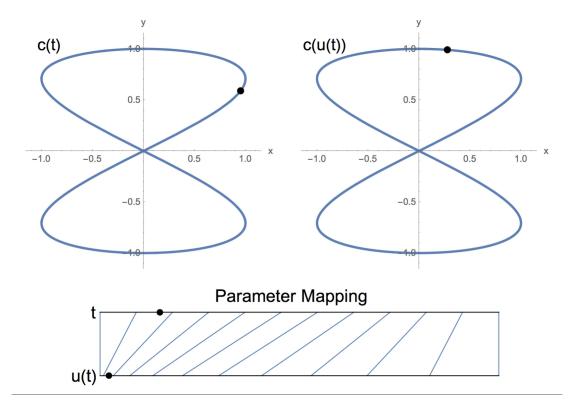
- We can represent the same geometry with different parameter functions.
- ullet For example, the same curve is defined for $t\in [0,1]$ by the functions

$$\mathbf{x}_1(t) = egin{bmatrix} \sin(4\pi t) \ \cos(2\pi t) \end{bmatrix}$$
 and $\mathbf{x}_2(t) = egin{bmatrix} \sin(4\pi\sqrt{t}) \ \cos(2\pi\sqrt{t}) \end{bmatrix}$.

- In other words, the image of [0,1] under \mathbf{x}_1 and \mathbf{x}_2 is equivalent.
- However: $\mathbf{x}_1(t) \neq \mathbf{x}_2(t)!$

Re-parameterization

- We can map from \mathbf{x}_1 to \mathbf{x}_2 using a re-parameterization function u.
 - \circ In our example, we have $u{:}\left[0,1
 ight]
 ightarrow \left[0,1
 ight]$ with $u(t)=\sqrt{t}$.
 - \circ If $\mathbf{x}_1(t) = \mathbf{c}(t)$, then $\mathbf{x}_2(t) = \mathbf{c}(u(t))$.

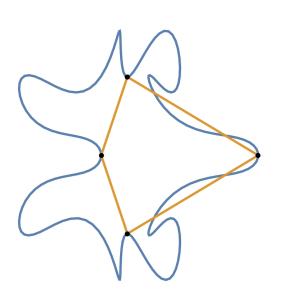


Re-parameterization

- We can map from \mathbf{x}_1 to \mathbf{x}_2 using a re-parameterization function u.
 - \circ In our example, we have $u{:}[0,1] \to [0,1]$ with $u(t) = \sqrt{t}$.
 - \circ If $\mathbf{x}_1(t) = \mathbf{c}(t)$, then $\mathbf{x}_2(t) = \mathbf{c}(u(t))$.
- Parameter intervals do not need to be identical.
 - \circ For example, if $\mathbf{x}_1:[a,b]\to\mathbb{R}^2$ and $\mathbf{x}_2:[c,d]\to\mathbb{R}^2$ define the same curve, we can define a reparameterization function $u:[a,b]\to[c,d]$ such that $\mathbf{x}_1(t)=\mathbf{x}_2(u(t))$.

Discrete Explicit Representation

- ullet Sample the parameter interval [a,b], e.g., at parameters $t_i=a+irac{b-a}{n},\;i=0,\ldots,n.$
- Then the polyline through the points $\mathbf{x}(t_i)$ is a piecewise linear approximation of the curve \mathbf{x} .
- With increasing n, the polyline converges to the curve.



- How can we measure length of a continuous curve?
- ullet Example: What is the length of a parabola $y=x^2$, $x\in[0,1]$?
- We know how to measure the length of a polyline!
- Let $t_i = a + i\Delta t$ and $\mathbf{x}_i = \mathbf{x}(t_i)$
- Polyline chord length

$$L_P = \sum_i \|\Delta \mathbf{x}_i\| \qquad \Delta \mathbf{x}_i := \|\mathbf{x}_{i+1} - \mathbf{x}_i\|$$

Polyline chord length

$$\|L_P = \sum_i \|\Delta \mathbf{x}_i\| = \sum_i \left\|rac{\Delta \mathbf{x}_i}{\Delta t}
ight\|\Delta t \qquad \Delta \mathbf{x}_i := \|\mathbf{x}_{i+1} - \mathbf{x}_i\|$$

• Curve arc length $(\Delta t \rightarrow 0)$

$$L = \int_a^b \|\mathbf{x}'\| \mathrm{d}t = \int_a^b \sqrt{\left(rac{\mathrm{d}x}{\mathrm{d}t}
ight)^2 + \left(rac{\mathrm{d}y}{\mathrm{d}t}
ight)^2} \mathrm{d}t$$

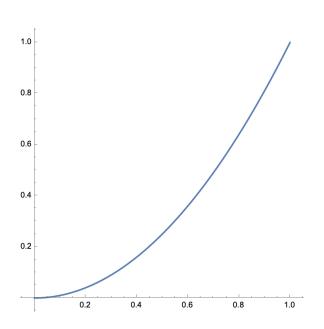
• Example: Length of Circle

$$\mathbf{x}(t) = egin{bmatrix} \sin(t) \ \cos(t) \end{bmatrix} \qquad \mathbf{x}'(t) = egin{bmatrix} \cos(t) \ -\sin(t) \end{bmatrix}$$

$$L = \int_a^b \|\mathbf{x}'(t)\| \mathrm{d}t = \int_a^b \sqrt{\left(rac{\mathrm{d}x(t)}{\mathrm{d}t}
ight)^2 + \left(rac{\mathrm{d}y(t)}{\mathrm{d}t}
ight)^2} \mathrm{d}t$$

$$L = \int_0^{2\pi} \sqrt{\cos^2(t) + \sin^2(t)} \mathrm{d}t = \int_0^{2\pi} 1 \mathrm{d}t = 2\pi$$

• Example: Length of Parabola



$$\mathbf{x}(t) = egin{bmatrix} t \ t^2 \end{bmatrix}$$

$$\mathbf{x}'(t) = egin{bmatrix} 1 \ 2t \end{bmatrix}$$

$$L=\int_0^1 \sqrt{1+4t^2}\mathrm{d}t$$

$$L=rac{1}{4}(2\sqrt{5}+\sinh^{-1}(2))pprox 1.47894$$

Tangent & Normal

- Parametric representation of planar curve $\mathbf{x}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$.
- First derivative defines a tangent vector.

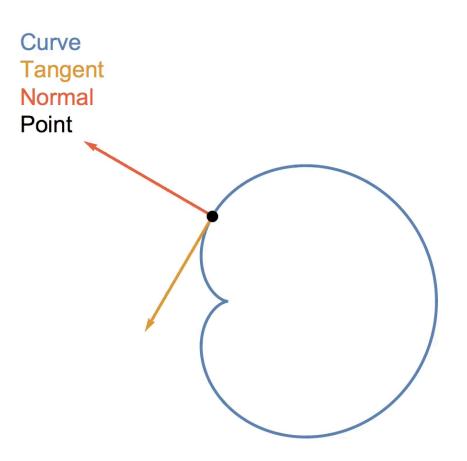
$$\mathbf{t} = \mathbf{x}'(t) := rac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = egin{bmatrix} \mathrm{d}x(t)/\mathrm{d}t \ \mathrm{d}y(t)/\mathrm{d}t \end{bmatrix}$$

• The curve normal vector is

$$\mathbf{n} = \mathsf{Rot}(90) rac{\mathbf{t}}{\|\mathbf{t}\|}$$

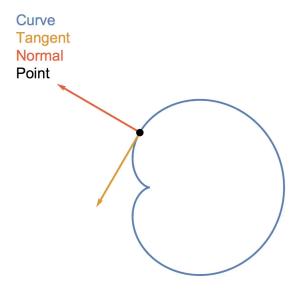
Tangent & Normal

• Example:
$$\mathbf{x}(t) = (1+\cos(t)) egin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$$
.



Curve as Particle Trajectory

- Curve parameter *t* is time.
- $\mathbf{x}(t)$ defines the position of particle at time t.
- Tangent $\mathbf{x}'(t)$ defines the velocity vector at time t.
- Length (magnitude) of tangent vector is particle speed.
- Second derivative $\mathbf{x}''(t)$ is acceleration.



Curve as Particle Trajectory: Example

• For $t \in [0,1]$, the two curves

$$\mathbf{x}_1(t) = egin{bmatrix} \cos(t) \ \sin(t) \end{bmatrix}$$
 and $\mathbf{x}_2(t) = egin{bmatrix} \cos(t^2) \ \sin(t^2) \end{bmatrix}$

define the same particle path.

- However, particles travel with different speed!
- $\|\mathbf{x}_1'(t)\| = 1$

$$\|\mathbf{x}_2'(t)\| = \sqrt{(-2t\sin(t^2))^2 + (2t\cos(t^2))^2} = 2|t|$$

Arc Length Parameterization

- We see that a curve can be parameterized in different ways. But is there a unique, canonical way to parameterize a curve?
- Yes! It's called arc length parameterization.
- Parameterize curve $\mathbf{x}(s)$ over [0, L] such that length from $\mathbf{x}(0)$ to $\mathbf{x}(s)$ is equal to s.

$$\int_0^s \|\mathbf{x}'(t)\| \mathrm{d}t = s$$

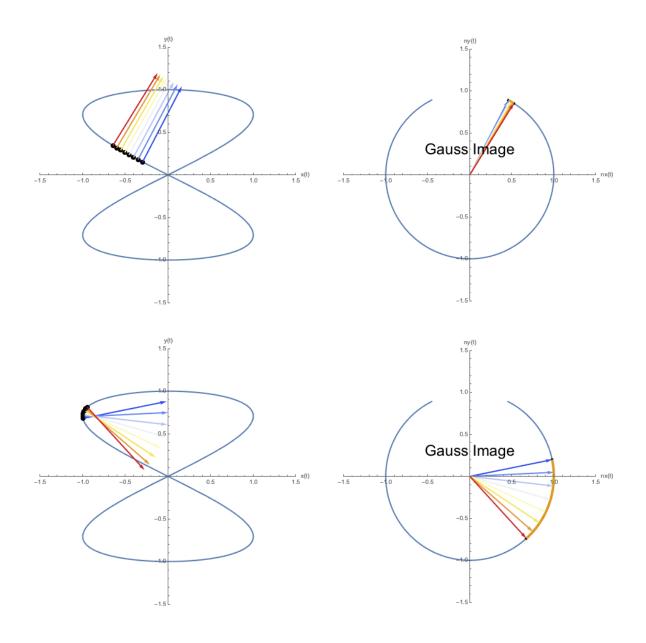
Arc Length Parameterization

• Intuitively, think about a rope of length $L = \int ||\mathbf{x}'|| dt$ that is bend (but not stretched or compressed!) to assume the shape of the curve.

- Curves parameterized with respect to arc length have some useful properties.
 - \circ Unit speed: $\|\mathbf{x}'(s)\| = 1$
 - Orthogonality: $\mathbf{x}'(s) \cdot \mathbf{x}''(s) = 0$

- Curvature is a measure of how much the curve deviates from a straight line.
- This can be quantified by looking at how much the curve normal varies as we traverse the curve.
- The curve normal vector is $\mathbf{n} = \mathsf{Rot}(90) \frac{\mathbf{t}}{\|\mathbf{t}\|}$.
- The Gauss map of the curve $\mathbf{x}(t)$ maps the parameter interval [a,b] to the unit circle: $\mathbf{n}:[a,b]\mapsto S^1.$
- This means that for every $t \in [a, b]$ we obtain a point on the unit circle defined by the curve normal $\mathbf{n}(t)$ at point $\mathbf{x}(t)$.

Gauss Map



- Let
 - $\Omega = [t \epsilon, t + \epsilon]$ be a small interval around parameter t,
 - $\circ l_{\mathbf{x}}(\epsilon)$ be the length of the curve segment $\mathbf{x}(\Omega)$,
 - $\circ l_{\mathbf{n}}(\epsilon)$ be the length of the corresponding segment of the Gauss map.
- Then the magnitude of the *curvature* at point $\mathbf{x}(t)$ is defined as

$$|\kappa(t)| = \lim_{\epsilon o 0} rac{l_{\mathbf{n}}(\epsilon)}{l_{\mathbf{x}}(\epsilon)}$$

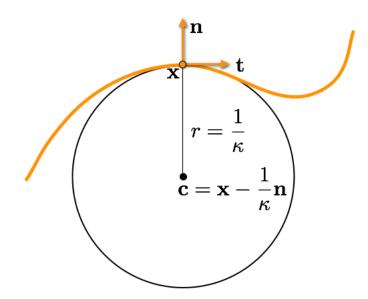
 If a curve is parameterized by arc length, then curvature is simply the magnitude of the second derivative

$$\mathbf{t}'(s) = \mathbf{x}''(s) = \kappa(s)\mathbf{n}(s) \ o \ |\kappa(s)| = |\mathbf{x}''(s)|$$

ullet For general parametrizations $\kappa(t) = rac{||\mathbf{x}'(t) imes\mathbf{x}''(t)||}{||\mathbf{x}'(t)||^3}$

- The *osculating circle* at point **x** is the circle tangent to the curve at **x** that best approximates the curve locally.
- Its center is given as $\mathbf{x} \frac{1}{\kappa}\mathbf{n}$, where κ is the *signed* curvature and \mathbf{n} is the normal at \mathbf{x} .
 - Orientation of normal is important!
- Its radius is the inverse of the absolute curvature:

$$r=rac{1}{|\kappa|}$$



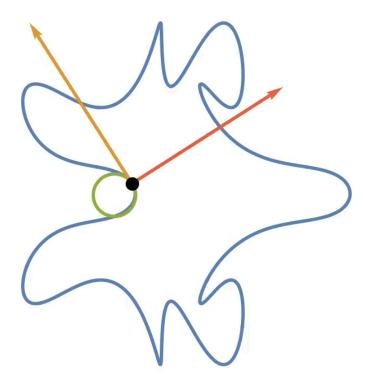
Osculating Circle

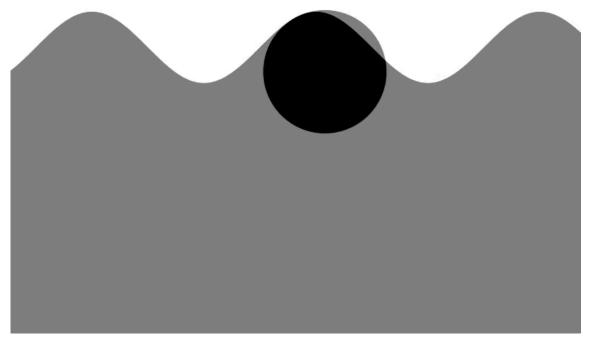
Tangent

Normal

Curve

Point





Source

Discrete Curvature

- How can we define curvature on a polyline?
- Continuous definition does not makes sense. Curvature would be zero on line segment and infinite at vertices. Polyline is not differentiable!
- Consider polyline as approximation of a smooth curve.
- Approximate osculating circle by circle passing through three adjacent points.
- Aside: Prove that any three distinct points define a unique circle!

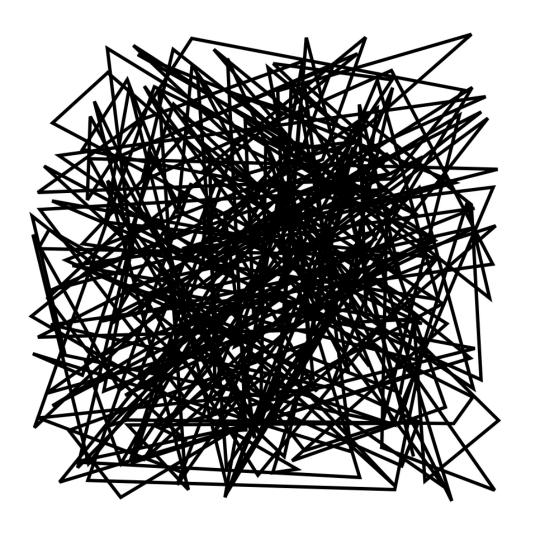
Discrete Curvature

Discrete Osculating Circle Osculating Circle Discrete Points Polyline Curve **Point**

A First Application: Curve Smoothing

- Variant A: Curvature Flow
 - For each vertex, compute the discrete osculating circle
 - Move every vertex towards the center of circle
 - Iterate!
- Variant B: Laplacian Smoothing
 - For each vertex, compute the average of its two neighbors
 - Move every vertex towards the average
 - Iterate!

Discrete Laplacian Curve Smoothing



curve is rescaled to original bounding box after each iteration number of iterations per frame increases towards end of video

CS457 Geometric Computing

10B - Differential Geometry of Surfaces

Mark Pauly

Geometric Computing Laboratory - EPFL

Overview

- Differential Geometry of parametric curves
- Differential Geometry of parametric surfaces
 - tangent space, metric, first fundamental form
 - normal curvature
 - principal curvatures
 - mean & Gaussian curvature

Parametric Surfaces

• Continuous surface

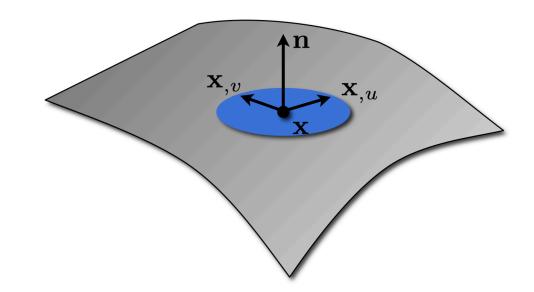
$$\mathbf{x}(u,v) = egin{bmatrix} x(u,v) \ y(u,v) \ z(u,v) \end{bmatrix}$$

Normal vector

$$\mathbf{n} = rac{\mathbf{x}_{,u} imes \mathbf{x}_{,v}}{\|\mathbf{x}_{,u} imes \mathbf{x}_{,v}\|}$$

• Assume regular parameterization

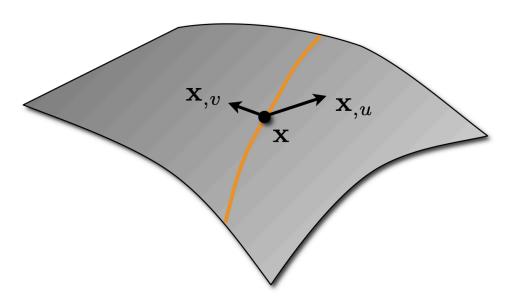
$$\mathbf{x}_{,u} imes \mathbf{x}_{,v}
eq \mathbf{0}$$



Curves on Surface

• A curve (u(t), v(t)) in the uv-plane defines a curve on the surface $\mathbf{x}(u, v)$:

$$\mathbf{x}(t) = \mathbf{x}(u(t), v(t))$$



Tangent Vectors of Curves on Surface

- Curve on surface $\mathbf{x}(t) = \mathbf{x}(u(t), v(t))$
- Tangent vector to curve

$$\mathbf{x}(t)' = rac{d\mathbf{x}(t)}{dt} = rac{d}{dt}(\mathbf{x}(u(t), v(t)))$$

$$= rac{\partial \mathbf{x}}{\partial u} \cdot rac{du}{dt} + rac{\partial \mathbf{x}}{\partial v} \cdot rac{dv}{dt}$$

$$= [\mathbf{x}_{,u}, \mathbf{x}_{,v}] egin{bmatrix} u' \\ v' \end{bmatrix}$$

$$= J\mathbf{u}'$$

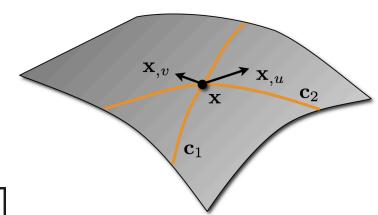
- Jacobian matrix $J \in \mathbb{R}^{3 \times 2}$ defines mapping of tangent vectors from the domain to the surface: $\mathbf{u}' \mapsto \mathbf{x}'$
- Tangent plane is formed by linear combinations of $\mathbf{x}_{,u}$ and $\mathbf{x}_{,v}$

Angles on Surface

- What is the angle of intersection of two curves c_1 and c_2 intersecting at x?
- Two tangents \mathbf{t}_1 and \mathbf{t}_2

$$\mathbf{t}_i = lpha_i \mathbf{x}_{,u} + eta_i \mathbf{x}_{,v}$$

• Compute inner product



First Fundamental Form

First fundamental form

$$\mathbf{I} \; = \; egin{bmatrix} E & F \ F & G \end{bmatrix} \; := \; egin{bmatrix} \mathbf{x}_{,u}^T\mathbf{x}_{,u} & \mathbf{x}_{,u}^T\mathbf{x}_{,v} \ \mathbf{x}_{,u}^T\mathbf{x}_{,v} & \mathbf{x}_{,v}^T\mathbf{x}_{,v} \end{bmatrix} = J^ op J^ op$$

Defines inner product on tangent space

$$\left\langle egin{bmatrix} lpha_1 \ eta_1 \end{bmatrix}, \ egin{bmatrix} lpha_2 \ eta_2 \end{bmatrix}
ight
angle \ := \ egin{bmatrix} lpha_1 \ eta_1 \end{bmatrix}^T \mathbf{I} \ egin{bmatrix} lpha_2 \ eta_2 \end{bmatrix}$$

First Fundamental Form

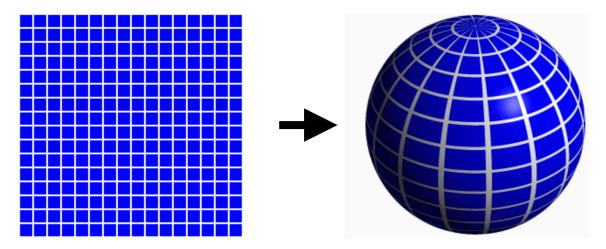
First fundamental form allows to measure...

$$egin{array}{lll} \mathbf{t}_1^T \mathbf{t}_2 &= \left. \langle (lpha_1, eta_1), (lpha_2, eta_2)
ight
angle \ &= \left. Elpha_1lpha_2 + F\left(lpha_1eta_2 + lpha_2eta_1
ight) + Geta_1eta_2 \end{array}$$

$$egin{array}{lll} \mathrm{d}s &=& \sqrt{\langle (\mathrm{d}u,\mathrm{d}v), (\mathrm{d}u,\mathrm{d}v)
angle} \ &=& \sqrt{E\,\mathrm{d}u^2+2F\,\mathrm{d}u\mathrm{d}v+G\,\mathrm{d}v^2} \end{array}$$

$$\mathrm{d} A \ = \ \sqrt{\det(\mathbf{I})}\,\mathrm{d} u\,\mathrm{d} v \ \ \ \ \ \ \ \ = \ \sqrt{EG-F^2}\,\mathrm{d} u\,\mathrm{d} v$$

Spherical parameterization



$$\mathbf{x}(u,v) \; = \; egin{bmatrix} \cos u \sin v \ \sin u \sin v \ \cos v \end{bmatrix}, \quad (u,v) \in [0,2\pi) imes [0,\pi)$$

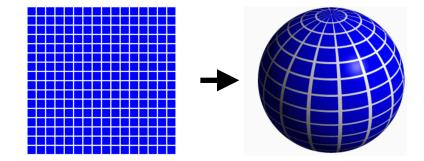
Tangent vectors

$$\mathbf{x}_{,u}(u,v) \ = egin{bmatrix} -\sin u \sin v \ \cos u \sin v \ 0 \end{bmatrix} \quad \mathbf{x}_{,v}(u,v) \ = egin{bmatrix} \cos u \cos v \ \sin u \cos v \ -\sin v \end{bmatrix}$$

First fundamental form

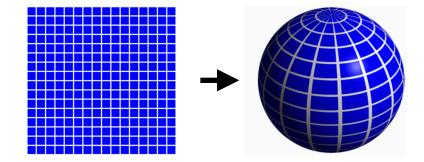
$$\mathbf{I} = egin{bmatrix} E & F \ F & G \end{bmatrix} := egin{bmatrix} \mathbf{x}_{,u}^{ op} \mathbf{x}_{,u} & \mathbf{x}_{,u}^{ op} \mathbf{x}_{,v} \ \mathbf{x}_{,v}^{ op} \mathbf{x}_{,v} \end{bmatrix} = egin{bmatrix} \sin^2 v & 0 \ 0 & 1 \end{bmatrix}$$

- Length of equator $\mathbf{x}(t,\pi/2)$
 - $\circ \ u(t) = t \ \mathsf{and} \ u'(t) = 1$
 - $\circ \ v(t) = \pi/2$ and v'(t) = 0

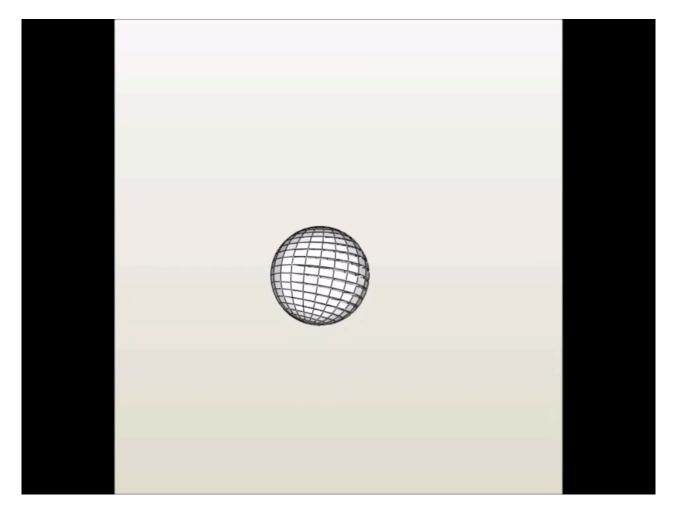


$$egin{aligned} \int_0^{2\pi} 1 \, \mathrm{d} s &= \int_0^{2\pi} \sqrt{E \, u_{,t}^2 + 2 F \, u_{,t} v_{,t} + G \, v_{,t}^2} \, \mathrm{d} t \ &= \int_0^{2\pi} \sin v \, \mathrm{d} t \ &= 2\pi \sin v \, = \, 2\pi \end{aligned}$$

Area of sphere

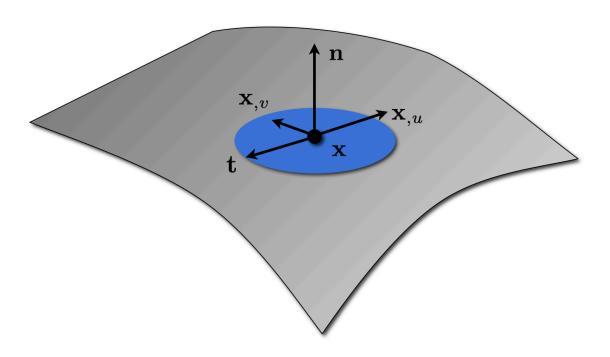


$$\int_0^\pi \int_0^{2\pi} 1 \, \mathrm{d}A = \int_0^\pi \int_0^{2\pi} \sqrt{EG - F^2} \, \mathrm{d}u \, \mathrm{d}v \ = \int_0^\pi \int_0^{2\pi} \sin v \, \mathrm{d}u \, \mathrm{d}v \ = 4\pi$$

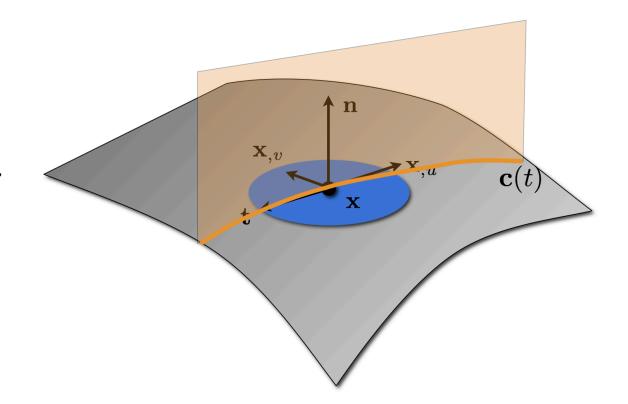


source

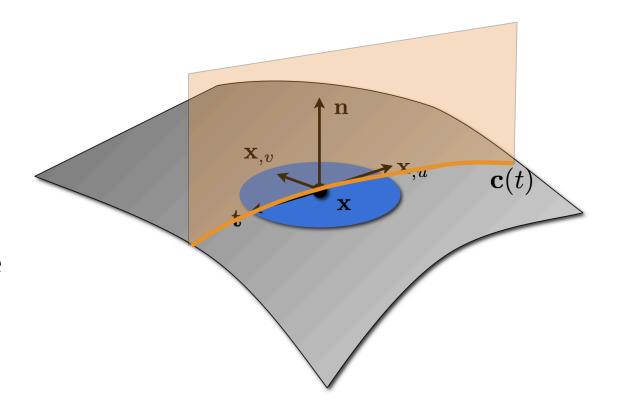
• Let **t** be a tangent vector at **x**.



- Let t be a tangent vector at x.
- \mathbf{x} , \mathbf{n} , and \mathbf{t} define a *normal plane*. The intersection of this plane with the surface yields a curve $\mathbf{x}(t)$, called a *normal section*.



- Let t be a tangent vector at x.
- \mathbf{x} , \mathbf{n} , and \mathbf{t} define a normal plane. The intersection of this plane with the surface yields a curve $\mathbf{x}(t)$, called a normal section.
- Normal curvature $\kappa_n(\mathbf{t})$ is defined as the curvature of the normal section $\mathbf{x}(t)$ at the point $\mathbf{x}(u,v)$.

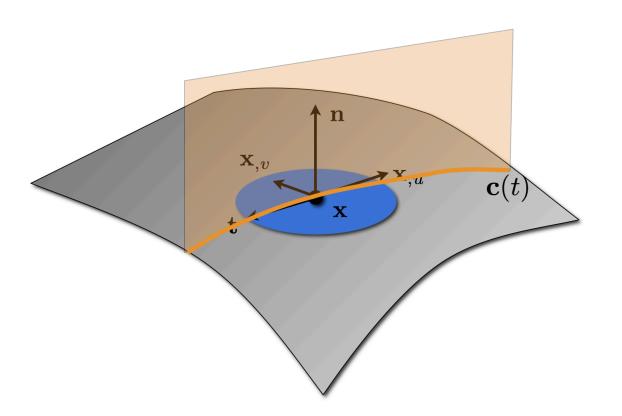


• If we write $\mathbf{t} = a\mathbf{x}_{,u} + b\mathbf{x}_{,v}$, the normal curvature can be computed as

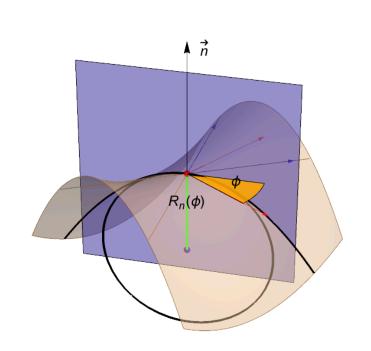
$$\kappa_n(\mathbf{t}) \ = \ rac{\left(a,b
ight)\mathbf{I\!I}\left(a,b
ight)^ op}{\left(a,b
ight)\mathbf{I}\left(a,b
ight)^ op} \ = \ rac{ea^2+2fab+gb^2}{Ea^2+2Fab+Gb^2}$$

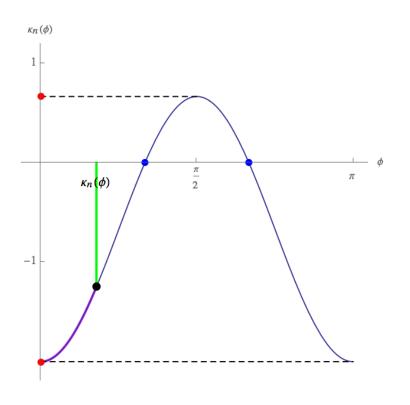
with the second fundamental form

$$\mathbf{II} = egin{bmatrix} e & f \ f & g \end{bmatrix} := egin{bmatrix} \mathbf{x}_{,uu}^{ op}\mathbf{n} & \mathbf{x}_{,uv}^{ op}\mathbf{n} \ \mathbf{x}_{,uv}^{ op}\mathbf{n} & \mathbf{x}_{,vv}^{ op}\mathbf{n} \end{bmatrix}$$



- Let $\mathbf{t}(\phi) = \cos \phi \mathbf{x}_{,u} + \sin \phi \mathbf{x}_{,v}$ be a tangent vector at \mathbf{x} and assume that $\mathbf{x}_{,u}$ and $\mathbf{x}_{,v}$ are orthonormal.
- We can plot $\kappa_n(\mathbf{t}(\phi))$ as a function of the tangent angle ϕ

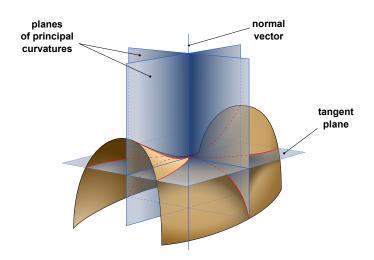




Surface Curvature(s)

Principal curvatures

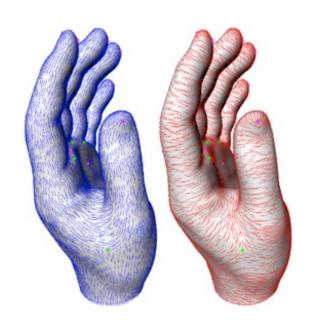
- Maximum curvature $\kappa_1 = \max_{\phi} \kappa_n(\phi)$
- Minimum curvature $\kappa_2 = \min_{\phi} \kappa_n(\phi)$



- Corresponding principal directions e_1 , e_2 are orthogonal.
- Can be computed from eigenvectors of the shape operator

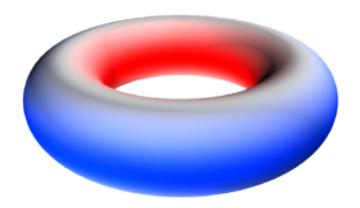
$$S=\mathbf{I}^{-1}\mathbf{II}$$

• (see handout for details).



Surface Curvature(s)

- Euler theorem: $\kappa_n(\phi) = \kappa_1 \cos^2 \phi + \kappa_2 \sin^2 \phi$
 - Proof: See handout
- Gaussian curvature $K = \kappa_1 \cdot \kappa_2$
- Example: Torus



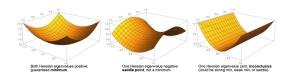
Classification

A point **x** on the surface is called

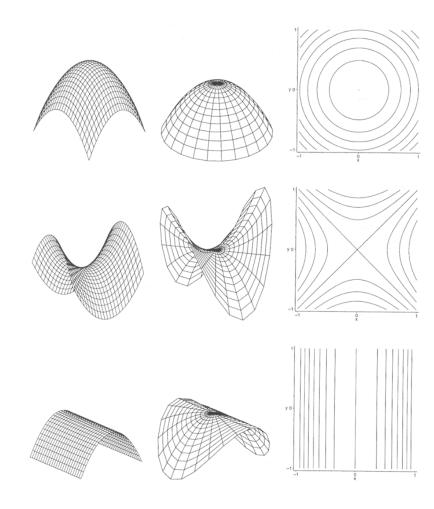
- elliptic, if K > 0
- hyperbolic, if K < 0
- parabolic, if K = 0
- umbilic, if $\kappa_1 = \kappa_2$

Caveat: Indefiniteness

- When is $\mathbf{d} = -H^{-1}\nabla f$ really a descent direction?
- $f(\mathbf{x} + \mathbf{d}) f(\mathbf{x}) \approx \nabla f \cdot \mathbf{d} = -\nabla f \cdot H^{-1} \nabla f$
- If $\mathbf{v} \cdot H\mathbf{v} > 0 \ \forall \mathbf{v} \neq 0$, then we are guaranteed $-\nabla f \cdot H^{-1} \nabla f < 0$
- But if H has negative eigenvalues (indefinite), and if ∇f has a significant component in the corresponding eigenspaces, then we can have $-\nabla f\cdot H^{-1}\nabla f>0$ (i.e., \mathbf{d} is an ascent direction)...
- Newton's method is attracted to saddle points.



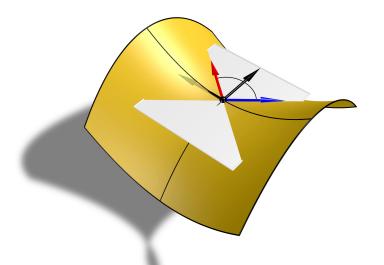
Slide 10 from 04B



Asymptotic Directions

- Which curves on the surface have zero normal curvature?
- Euler theorem: $\kappa_n(\phi) = \kappa_1 \cos^2 \phi + \kappa_2 \sin^2 \phi$
- Solutions for $\kappa_n(\phi) = 0$

$$\cos heta = \sqrt{1 - rac{\kappa_1}{\kappa_1 - \kappa_2}}, \quad \sin heta = \pm \sqrt{rac{\kappa_1}{\kappa_1 - \kappa_2}}.$$



- Observation: Only if $K \leq 0$ can we have $\kappa_n(\phi) = 0$ for some ϕ .
- For a point on the surface, a direction defined by $\mathbf{t}(\phi) = \cos \phi \mathbf{x}_{,u} + \sin \phi \mathbf{x}_{,v}$ with $\kappa_n(\phi) = 0$ is called an asymptotic direction.

Asymptotic Curves

- A curve on the surface that is at each point tangent to an asymptotic direction is called an *asymptotic curve*.
- Asymptotic curves only bend in the tangent plane of the surface, but not in the orthogonal direction.

