Concurrent Algorithms 2024-2025
Mock Midterm Solutions

November 25, 2024

Problem 1 (2 points)

Tasks.

1. Write a wait-free algorithm that implements a safe MRSW binary register using (any number of)
SRSW safe binary registers.

2. Write a wait-free algorithm that implements a regular MRSW binary register using (any number
of) safe MRSW binary registers.

Solution

The implementations can be found in the Registers lecture (slides 11 — 13).

Problem 2 (2 points)

A snapshot object maintains an array of registers R of size n, has operations scan() and update;() and
the following sequential specification:

1 upon update;(v) do

2 ‘ Ri —V
3 upon scan do
4 ‘ return R

Figure 1: Sequential specification of the snapshot object.

The following algorithm (incorrectly) implements an atomic snapshot object using an array of shared
registers R:

1 upon update;(v) do
2 ts < ts+1

3 R; < (v, ts,scan())

4 upon scan do

5 t1 < collect(), tp +

6 while true do

7 t3 < collect()

8 if t3 = t; then return (#3[1].val, ..., t3[N].val)
9

10 fork < 1to N do
11 if ta[k].ts > t1[k].ts + 1 then return t3[k].snapshot
13 ty < t3

14 upon collect do
15 fOI']'FltONdO
16 x]‘ — Rj;

17 return x

Figure 2: Incorrect implementation of the snapshot object.

Task. Give an execution of the algorithm which violates atomicity of the snapshot object.

Solution. Consider an execution given in the figure below. In the execution, the scan of p, records
the snapshot that does not observe the concurrent update of p;. Process p3 performs a scan that starts
after the update of p; is done, so it has to observe its effects. It performs one collect before p, writes the
results of its scan into its position in the snapshot object and another one after. Because the timestamps
of these two elements of the snapshot differ by one, it returns the scan of py. The scan does not include
the update of py, so the atomicity is violated.

update1 (1)

P1 — o
upda'te2(2)
scan !
'scan
P3 =t
collect collect

Figure 3: An execution violating atomicity

Problem 3 (3 points)

Consider the linearizable and wait-free log object. The log object supports two operations: append and
getLog. The sequential specification of the log object is shown below:

1 Given:
Sequential linked list L that is initially empty.

N

3
4 procedure append(obj)

5 L.append(obj)

6

7 procedure getlLog()

8 result[] < L

9 k < length(L)

10 i1

11 while i < k do

12 i+—i+1

13 result[i] < element(L,i) // the element(L, i) function call returns the i-th element of list L
13 return result

Figure 4: Sequential specification of the log object.

Furthermore, consider a linearizable and wait-free fetch-and-increment object where its sequential
specification is shown below:

1 Given:
2 Register R that is initially 0.

old <+ R
R+ old+1
7 return old

3
4 procedure fetchAndIncrement()
5
6

Figure 5: Sequential specification of the fetch-and-increment object.

Is it possible to implement the linearizable and wait-free log object by using any number of read-write
registers and fetch-and-increment objects? Explain your answer.

Solution

There are two correct answers.

Yes: In a system of two or fewer processes, fetch-and-increment can implement an atomic log. We
know from class that fetch-and-increment has consensus number 2, thus can be used to implement
a universal construction in a system of 2 processes. That universal construction can then be used to
implement the atomic log.

No: In a system of 3 or more processes, there is no wait-free atomic implementation of a shared
log from fetch-and-increment objects and registers. The log object can be used to solve consensus in a
system of n processes, where n can be arbitrarily large. To do so, upon invoking propose(v), process
p simply appends v to the shared log, then retrieves the log using getLog() and decides on the first
value in the log. Thus, the log object has consensus number cc. If it were possible to produce an
implementation Imp of a linearizable and wait-free log object using atomic read-write registers and
fetch-and-increment objects, Imp could then be used to solve consensus for more than 2 processes. This
contradicts the fact that fetch-and-increment has consensus number 2.

Problem 4 (3 points)

An atomic shared counter maintains an integer x, initially o, and has two operations inc() and read().
The sequential specification is as follows:

1 X integer, initially o
2 upon read(x) do

3 ‘ return x

4 upon inc(x) do

5 ‘ x+—x+1

Consider the following, incorrect, implementation of an obstruction-free consensus object from shared
counters:

uses: Cy, C; — atomic shared counters initialized to 0

1 upon propose(v) do
2 while true do

3 (x0, x1) < readCounters()
4 if xg > xq then
5 ‘ v+ 0
6 else if x; > xg then
7 ‘ v+ 1
8 if |[xg — x1| > 1 then
9 ‘ return v
10 Cv.iﬂC()
11 upon readCounters() do
12 while true do
13 Xg < Co.read()
14 X1 < Cl‘read()
15 x(y < Co.read()
16 if xo = x{, then
17 ‘ return (xg, x1)

Give an execution of the above algorithm that shows that the algorithm is not a correct implemen-
tation of an obstruction-free consensus object, i.e. an execution in which some property (obstruction-
freedom, validity, or agreement) of obstruction-free consensus is violated.

Solution

Consider a process p which is the only process taking steps. Because p is the only process taking steps
and the value of C, is incremented in the while loop, then eventually the value of C, is going to be
greater than the value of C,_;. Therefore, process p will eventually decide a value, and consequently
the algorithm satisfies obstruction-freedom.

The algorithm satisfies validity because if all processes propose the same value v (which could be
either 0 or 1), then they increment the same counter C,, and consequently the value of C, is would be
greater than the value of C,_;.

Since the algorithm satisfies obstruction-freedom and validity, then the only property it violates is
agreement. To show that it violates agreement consider the following execution in which process pg
proposes value 0 and process p; proposes value 1:

* First, only process pg takes steps until it executes the step at line 8,

¢ then process py stops and only process p; takes steps executing the first iteration of the while
loop, where it increments C;, and the second iteration of the loop, in which it decides 1 (because
Cl =1and CQ = 0),

¢ then process pg resumes taking steps incrementing Cy at line 10 and executing the second iteration
of the loop.

® Because during the second iteration of the loop by pg the values of Cy and C; are the same (C; =1
and Cy = 1), then pg increments Cy again and executes the third iteration of the loop in which it
decides 0 (because C; = 1 and Cy = 2).

Problem 5 (4 points)

An atomic 0-set-once object is a shared object that has three states L, 0, and 1. L is the initial state. It
provides only one operation set(v) where v € {0,1}, such that:

¢ If the object is in state L, then sef(v) changes the state of the object to v and returns v.
e If the object is in state s where s € {0,1}, then set(v) changes the state of the object to s A —v and
returns the new state of the object (i.e., s A —v).
Tasks.
1. Explain what it means for a shared object to have infinite consensus number.

2. Write an algorithm that solves consensus among two processes using any number of 0-set-once
objects and registers.

3. Prove that the atomic 0-set-once object has infinite consensus number.

Solution

A shared object has infinite consensus number if and only if can solve wait-free consensus among any
number of processes.

We will prove the claim by mathematical induction on the number of processes n.

Base case: Let n = 1. When there is only one process, it trivially decides its own value.

Inductive step: Assume there is an implementation C,, of consensus using 0-set-once objects and
registers in a system of n processes. We need to prove that there is an implementation C,; of
consensus using 0-set-once objects and registers in a system of n 4 1 processes. The implementation of
Cp41 uses a 0-set-once object and a C,, consensus object for the first n processes, and just a 0-set-once
object for process p;+1:

uses: C,, — shared consensus object for n processes
uses: R[0], R[1] — shared registers
uses: S — shared 0-set-once object initialized to L.

1 upon propose(v) for processes py, ..., pn do
2 val < C,,.propose(v)

3 R[0] « val

4 t + S.set(0)

5 if t = 0 then

6 ‘ return R|0]
7 else

8 ‘ return R[1]

upon propose(v) for process p; 41 do
10 R[].] — 0

11 [S.set(l)

12 if t =1 then

£

13 ‘ return R[1]
14 else
15 ‘ return R|0]

