
Concurrent Algorithms 2024-2025

Mock Midterm Solutions

November 25, 2024

Problem 1 (2 points)

Tasks.

1. Write a wait-free algorithm that implements a safe MRSW binary register using (any number of)
SRSW safe binary registers.

2. Write a wait-free algorithm that implements a regular MRSW binary register using (any number
of) safe MRSW binary registers.

Solution

The implementations can be found in the Registers lecture (slides 11− 13).

1

Problem 2 (2 points)

A snapshot object maintains an array of registers R of size n, has operations scan() and updatei() and
the following sequential specification:

1 upon updatei(v) do
2 Ri ←v
3 upon scan do
4 return R

Figure 1: Sequential specification of the snapshot object.

The following algorithm (incorrectly) implements an atomic snapshot object using an array of shared
registers R:

1 upon updatei(v) do
2 ts← ts + 1
3 Ri ← (v, ts, scan())
4 upon scan do
5 t1 ← collect(), t2 ← t1
6 while true do
7 t3 ← collect()
8 if t3 = t2 then return ⟨ t3[1].val, . . . , t3[N].val ⟩
9

10 for k← 1 to N do
11 if t3[k].ts ≥ t1[k].ts + 1 then return t3[k].snapshot
12

13 t2 ← t3

14 upon collect do
15 for j← 1 to N do
16 xj ← Rj;
17 return x

Figure 2: Incorrect implementation of the snapshot object.

Task. Give an execution of the algorithm which violates atomicity of the snapshot object.

Solution. Consider an execution given in the figure below. In the execution, the scan of p2 records
the snapshot that does not observe the concurrent update of p1. Process p3 performs a scan that starts
after the update of p1 is done, so it has to observe its effects. It performs one collect before p2 writes the
results of its scan into its position in the snapshot object and another one after. Because the timestamps
of these two elements of the snapshot differ by one, it returns the scan of p2. The scan does not include
the update of p1, so the atomicity is violated.

2

Figure 3: An execution violating atomicity

Problem 3 (3 points)

Consider the linearizable and wait-free log object. The log object supports two operations: append and
getLog. The sequential specification of the log object is shown below:

1 Given:
2 Sequential linked list L that is initially empty.
3

4 procedure append(obj)
5 L.append(obj)
6

7 procedure getLog()
8 result[]← ⊥
9 k← length(L)
10 i← 1
11 while i ≤ k do
12 i← i + 1
13 result[i]← element(L, i) // the element(L, i) function call returns the i-th element of list L
14 return result

Figure 4: Sequential specification of the log object.

Furthermore, consider a linearizable and wait-free fetch-and-increment object where its sequential
specification is shown below:

1 Given:
2 Register R that is initially 0.
3

4 procedure fetchAndIncrement()
5 old← R
6 R← old + 1
7 return old

Figure 5: Sequential specification of the fetch-and-increment object.

3

Is it possible to implement the linearizable and wait-free log object by using any number of read-write
registers and fetch-and-increment objects? Explain your answer.

Solution

There are two correct answers.

Yes: In a system of two or fewer processes, fetch-and-increment can implement an atomic log. We
know from class that fetch-and-increment has consensus number 2, thus can be used to implement
a universal construction in a system of 2 processes. That universal construction can then be used to
implement the atomic log.

No: In a system of 3 or more processes, there is no wait-free atomic implementation of a shared
log from fetch-and-increment objects and registers. The log object can be used to solve consensus in a
system of n processes, where n can be arbitrarily large. To do so, upon invoking propose(v), process
p simply appends v to the shared log, then retrieves the log using getLog() and decides on the first
value in the log. Thus, the log object has consensus number ∞. If it were possible to produce an
implementation Imp of a linearizable and wait-free log object using atomic read-write registers and
fetch-and-increment objects, Imp could then be used to solve consensus for more than 2 processes. This
contradicts the fact that fetch-and-increment has consensus number 2.

4

Problem 4 (3 points)

An atomic shared counter maintains an integer x, initially 0, and has two operations inc() and read().
The sequential specification is as follows:

1 x integer, initially 0

2 upon read(x) do
3 return x

4 upon inc(x) do
5 x ← x + 1

Consider the following, incorrect, implementation of an obstruction-free consensus object from shared
counters:

uses: C0, C1 – atomic shared counters initialized to 0

1 upon propose(v) do
2 while true do
3 (x0, x1)← readCounters()
4 if x0 > x1 then
5 v← 0
6 else if x1 > x0 then
7 v← 1
8 if |x0 − x1| ≥ 1 then
9 return v

10 Cv.inc()

11 upon readCounters() do
12 while true do
13 x0 ← C0.read()
14 x1 ← C1.read()
15 x′0 ← C0.read()
16 if x0 = x′0 then
17 return (x0, x1)

Give an execution of the above algorithm that shows that the algorithm is not a correct implemen-
tation of an obstruction-free consensus object, i.e. an execution in which some property (obstruction-
freedom, validity, or agreement) of obstruction-free consensus is violated.

Solution

Consider a process p which is the only process taking steps. Because p is the only process taking steps
and the value of Cv is incremented in the while loop, then eventually the value of Cv is going to be
greater than the value of Cv−1. Therefore, process p will eventually decide a value, and consequently
the algorithm satisfies obstruction-freedom.

The algorithm satisfies validity because if all processes propose the same value v (which could be
either 0 or 1), then they increment the same counter Cv, and consequently the value of Cv is would be
greater than the value of Cv−1.

Since the algorithm satisfies obstruction-freedom and validity, then the only property it violates is
agreement. To show that it violates agreement consider the following execution in which process p0
proposes value 0 and process p1 proposes value 1:

• First, only process p0 takes steps until it executes the step at line 8,

5

• then process p0 stops and only process p1 takes steps executing the first iteration of the while
loop, where it increments C1, and the second iteration of the loop, in which it decides 1 (because
C1 = 1 and C0 = 0),

• then process p0 resumes taking steps incrementing C0 at line 10 and executing the second iteration
of the loop.

• Because during the second iteration of the loop by p0 the values of C0 and C1 are the same (C1 = 1
and C0 = 1), then p0 increments C0 again and executes the third iteration of the loop in which it
decides 0 (because C1 = 1 and C0 = 2).

6

Problem 5 (4 points)

An atomic 0-set-once object is a shared object that has three states ⊥, 0, and 1. ⊥ is the initial state. It
provides only one operation set(v) where v ∈ {0, 1}, such that:

• If the object is in state ⊥, then set(v) changes the state of the object to v and returns v.

• If the object is in state s where s ∈ {0, 1}, then set(v) changes the state of the object to s ∧ ¬v and
returns the new state of the object (i.e., s ∧ ¬v).

Tasks.

1. Explain what it means for a shared object to have infinite consensus number.

2. Write an algorithm that solves consensus among two processes using any number of 0-set-once
objects and registers.

3. Prove that the atomic 0-set-once object has infinite consensus number.

Solution

A shared object has infinite consensus number if and only if can solve wait-free consensus among any
number of processes.

We will prove the claim by mathematical induction on the number of processes n.

Base case: Let n = 1. When there is only one process, it trivially decides its own value.
Inductive step: Assume there is an implementation Cn of consensus using 0-set-once objects and
registers in a system of n processes. We need to prove that there is an implementation Cn+1 of
consensus using 0-set-once objects and registers in a system of n + 1 processes. The implementation of
Cn+1 uses a 0-set-once object and a Cn consensus object for the first n processes, and just a 0-set-once
object for process pn+1:

uses: Cn – shared consensus object for n processes
uses: R[0], R[1] – shared registers
uses: S – shared 0-set-once object initialized to ⊥.

1 upon propose(v) for processes p1, ..., pn do
2 val ← Cn.propose(v)
3 R[0]← val
4 t← S.set(0)
5 if t = 0 then
6 return R[0]
7 else
8 return R[1]

9 upon propose(v) for process pn+1 do
10 R[1]← v
11 t← S.set(1)
12 if t = 1 then
13 return R[1]
14 else
15 return R[0]

7

