
Concurrent Computing November 12, 2024

Exercise 6

Problem 1. Let A be an obstruction-free algorithm implementing some shared object O with operations
op1, . . . , opk. The goal of the exercise is to transform algorithm A into a wait-free algorithm B that also
implements shared object O (i.e., the operations op1, . . . , opk). We will do it by implementing an abstraction
called a contention manager, using an eventually perfect failure detector 3P and atomic registers.

Wait-free implementation B of shared object O

Obstruction-free
algorithm A Contention manager Failure detector 3P

try/resign suspected

A contention manager implements two operations: tryi and resigni (invoked by process pi). These op-
erations do not take any arguments and always return ok. A contention manager resolves contention, and
thus guarantees wait-freedom, by delaying some processes that have invoked tryi. In other words, when a
process pi invokes tryi, a contention manager can decide when to return from the operation—it can delay
the response of tryi for an arbitrarily long time.

We assume that algorithm A uses the interface of the contention manager, i.e., that it invokes tryi and
resigni. More precisely, every time an operation opm, implemented by A, is executed by a process pi, the
following conditions are satisfied:

1. tryi is called always before the first step of the implementation of opm is executed (i.e., just after opm is
invoked), and possibly many times while opm is being executed,

2. resigni is called only immediately after the last step of the implementation of opm is executed (i.e., just
before the result of opm is returned),

3. If process pi is correct but never returns from operation opm (i.e., the implementation of the operation
is executed infinitely long), then pi calls tryi infinitely many times.

Moreover, every time process pi invokes tryi or resigni, pi waits until tryi/resigni returns before executing
any further steps of algorithm A.

An eventually perfect failure detector 3P maintains, at every process pi, a set suspectedi of suspected
processes. 3P guarantees that eventually, after some unknown time, the following conditions are satisfied:

1. Every correct process permanently suspects every crashed process,

2. No correct process is ever suspected by any correct process.

This means that suspectedi can be arbitrary and different at every process for any finite period of time. How-
ever, eventually, at every correct process pi, set suspectedi will be permanently equal to the set of processes
that have crashed.

Your task is to implement a contention manager C (i.e., the operations tryi and resigni, for every process
pi) that converts obstruction-free algorithm A into wait-free algorithm B, and that uses only atomic regis-
ters and failure detector 3P .

p-1


