
Concurrent Computing October 14, 2024

Solutions to Exercise 4

Problem 1. Given that the splitter will be called concurrently by a number of N threads, we can think
about this as selecting 1 thread to return stop. All the threads arriving during this election but not chosen
to return stop can return left, and the ones arriving after the election can return right. It is acceptable to not
have any threads selected to get stop (e.g., in case more than 1 thread executes splitter), but it must never be
possible to have more than 1 thread return stop during a concurrent execution.

We use two registers:

• P (multi-valued), and

• S (binary, initialized to false)

P holds the id of the thread that should get stop. S marks whether a stop thread has been selected. When
a thread calls splitter, it needs to check whether S is false, and if so, set it to true and return stop. The difficulty
is that we cannot use atomic getAndSet-type primitives, so multiple threads first reading the value of S and
then updating it could mistakenly think they each got stop. In order to decide which thread should get stop,
each thread volunteers itself by setting the value of P to their own id. The last thread to update P wins.

After volunteering, a thread checks the S flag, and if it is true, then the thread knows it arrived after
the election, and so it gets right. If S still false, then the thread (one of potentially many) arrived during the
election, so it sets S to true, and checks if it won (i.e., if the value of P is equal to its own id). If the thread
won, it simply gets stop. Otherwise, it means some other thread managed to change P after it, hence the
current thread lost and gets left.

It is possible that a thread updates P and becomes the winner just as another thread sets S to true, but
before checking to see if it won. In this case, 0 threads get stop, as the winner then reads S, finds it true,
concludes it arrived after the election, and gets right.

However, it is impossible for more than 1 thread to get stop. Assume by way of contradiction that
2 threads with identifiers i and j both return stop. Furthermore, assume without loss of generality that
thread i first performed the read of P and then thread j read P. Therefore, the order of events will be
readi(P = i)→ readj(P = j) (i.e., since both threads return stop they read their own identifier when reading
from P). We furthermore know that both threads write register P at the beginning of their execution and
since both threads return stop they read S to be false. So we have the following ordering of events:

• writei(P← i)→ readi(S = f alse)→ writei(S← true)→ readi(P = i).

• writej(P← j)→ readj(S = f alse)→ writej(S← true)→ readj(P = j).

Since thread i read P = i (and thread j read P = j) it means that writej(P ← j) takes place after
readi(P = i). So we have:

• writei(P ← i) → readi(S = f alse) → writei(S ← true) → readi(P = i) → writej(P = j) → readj(S =
f alse).

This is a contradiction, since thread i wrote true to S and then j read false from S.

p-1

upon splitteri

P← i;

if S then return ”right”;

S← true;

if P = i then return ”stop”;

return ”left”;

Algorithm 1: Sample implementation of the splitter object.

p-2

Problem 2.
Algorithm 2 presents the pseudocode of an atomic wait-free snapshot as described in class. For a pro-

gram running N threads, in order to run a scan or a collect operation, all the registers of the N threads need
to be read. Writes are done only on a thread’s register R[i]. Since we know beforehand that many of the N
threads will not use the snapshot, a better solution is to assign registers to threads on demand.

We assume that there exists an obtain() operation that each thread can call to get a register that is assigned
only to itself. Algorithm 3 presents the implementation of update() and scan() using the aforementioned
operation. Importantly, the number of registers that need to be parsed now in scan() is dependent on the
number of threads that have written to the object (and thus have been assigned a register).

upon scani
t1 ← collect(), t2 ← t1;
while true do

t3 ← collect();
if t3 = t2 then return ⟨ t3[1].val, . . . , t3[N].val ⟩ ;
for k← 1 to N do

if t3[k].ts ≥ t1[k].ts + 2 then return t3[k].snapshot ;

t2 ← t3;

procedure collect()
for k← 1 to N do

x[k]← R[k];

return x;

procedure updatei(v)
ts← ts + 1;
snapshot← scan();
R[i]← ⟨ ts, v, snapshot ⟩;

Algorithm 2: Sample implementation of a non-adaptive snapshot. Each thread has its own register.

procedure update(v)
if myreg = ⊥ then

myreg← obtain();

ts← ts + 1;
snapshot← scan();
R[myreg]← ⟨ ts, v, snapshot ⟩;

upon scani
t1 ← collect(), t2 ← t1;
while true do

t3 ← collect();
if t3 = t2 then return ⟨ t3[1].val, . . . , t3[t3.length].val ⟩ ;
for k← 1 to t3.length do

if t3[k].ts ≥ t1[k].ts + 2 then return t3[k].snapshot ;

t2 ← t3;

Algorithm 3: Sample implementation of update() and scan() in an adaptive snapshot. Each thread that
affects the snapshot calls obtain() to get assigned a register.

p-3

Implementing obtain()
Recall the splitter object implemented in the previous exercise: it allows selecting at most 1 thread out of

multiple accessing the object concurrently, while partitioning the remaining threads into 2 separate pools
(left, right). Keeping this in mind, we create a matrix of registers and splitters, as presented in figure 1. A
thread calling obtain() starts from the top-left corner and calls the splitter in that cell. If it gets stop, then it
obtains that register. Otherwise, it moves 1 column to the right, or 1 row downwards for left, and repeats
the process.

procedure obtain()
x ← 1, y← 1;
while true do

s← S[x, y].splitter();

if s =”stop” then return R[x, y];

else if s =”left” then y← y + 1;

else x ← x + 1;

Algorithm 4: Implementation of obtain() using a
matrix of registers and splitter objects.

S1,1 S2,1 S3,1 right

S1,2

S1,3

S2,2

. . .

. . .

left

Figure 1: Matrix of registers and splitter objects.

Implementing collect()
Finally, we need to adapt the collect() call to the matrix of registers now being used. The insight here is

that all the registers that have been assigned from each matrix diagonal that has had at least 1 splitter used
need to be taken into account.

procedure collect()
C ← ⟨ ⟩;
d← 1;
while diagonal d has a splitter that has been

traversed do
C ← C · ⟨ values of all non-⊥ registers
on diagonal d ⟩;

d← d + 1;

return C;

Algorithm 5: Implementation of collect() using a
matrix of registers and splitter objects.

S1,1 S2,1 S3,1 . . .

S1,2

S1,3

S2,2

. . .

. . .

. . .

Figure 2: Matrix of registers and splitter objects.

p-4

