Concurrent Algorithms October 14, 2024

Exercise 4

Problem 1. A splitter is a shared object that has only one operation, called splitter, that can return stop, left
or right. Every splitter object ensures the following properties:

1. If a single process executes splitter, then the process is returned stop;
2. If two or more processes execute splitter, then not all of them get the same output value; and
3. At most one process is returned stop.

Your task is to implement a wait-free, atomic splitter object using only atomic (multi-valued, MRMW) reg-
isters. Assume that each process invokes splitter only once. If two or more processes execute splitter, then
they may execute concurrently or one after another. In both cases, the properties above should be ensured.
Also assume that all processes are correct, i.e., do not crash.

Problem 2. The snapshot algorithm presented in the lecture has step complexity that is a function of the
number of processes n. That is, in the worst case, a process needs f(n) steps to complete a single update or
scan operation, where f is some function.

Imagine a situation where 7 is very large but usually only a few processes use a snapshot object. In such
a scenario, it would be best to have a snapshot implementation which step complexity is not a function of
n but of the number of processes that use the shared object.

Your task is to write such an algorithm. More precisely, you should devise an algorithm for a (wait-free,
atomic) snapshot object such that the step complexity of its update and scan operations is f(k), where k is
the number of processes that ever invoked either of the operations (in the current execution) and f is some
function independent of 7.



