Concurrent Computing December 16, 2024

Solutions to Exercise 11

Problem 1.
Consider the atomic commit-adopt object, which has the following specification. Every process p pro-

poses an input value v to such an object and obtains an output, which consists of a pair (dec, val); dec can

be either commit or adopt. The following properties are satisfied:

Validity: If a process obtains output (commit, v) or (adopt, v), then v was proposed by some process.

Commitment: If every process proposes the same value, then no process may output (adopt, v) for
any value v.

Agreement: If a process p outputs (commit, v) and a process g outputs (commit, v’) or (adopt, v'),
thenv = v'.

Termination: Every correct process eventually obtains an output.

Consider the following implementation of an atomic commit-adopt object from atomic wait-free snapshot
objects and atomic MRMW registers:

Using two shared snapshot objects: S; and S; of size n, initialized to (L, L, ..., 1);

Using two local arrays of registers: a; and b; of size n.

The implementation is as follows:

propose (v)

S_1.updatei, v;

a_i := S_1.snapshot();
if every non-l value in a_i is v then

x := (true, v);

else
v := max(a_i); // max(arr) returns the greatest non-l element in array arr
x := (false, v);

S_2.update(i, x);

b_i := S_2.snapshot();

if every non-l value in b_i is equal to (true, v) then
return (commit, v);

if some value in b_i is equal to (true, val) for some val then
return (adopt, val);

return (adopt, Vv);

Is the above implementation correct (does it satisfy the commit-adopt properties)? Justify your answer.



Solution

Yes, the implementation is correct.

Validity All non-_L values in S; are proposed values. Therefore, if a process p writes (true, v) or (false, v)
in Sy, then v must have been proposed by some process g (possibly by p itself). Since the output value of a
process is taken either from S; or from S,, validity is satisfied.

Lemma 1 If S, contains two entries (true,v,) and (true, vy), then vy = v,.

Proof Assume not. Since every process writes in S; and Sp at most once, it must be that some pro-
cess p1 wrote (true, v1) and some other process p, wrote (true, vp). Thus, it must be that p; wrote v7 in Sy,
took a snapshot of S; and only saw v; in that snapshot. Similarly, it must be that p, wrote v, in Sq, took a
snapshot of S and only saw v; in that snapshot. This is impossible: since the snapshot object is atomic and
the processes update S; before scanning, it must be that either p; saw py’s value, or vice-versa. We have
reached a contradiction. U

Commitment Assume all proposed values are equal. Then no process can write (false, -) in Sy; S contains
only entries of the form (true, -). By Lemma 1, all such entries have equal values, so all processes that return
must commit.

Agreement In order for a process p to commit v, p must write v to 51, scan S; and see only entries equal
to v; p must then write (true,v) to Sy, scan S, and see only entries equal to (true, v) and finally return
(commit, v).

Assume by contradiction that process p commits v and some process g commits or adopts v/ # v. ¢’s
scan of S, cannot include the (true, v) entry written by p, otherwise g would adopt v (remember that by
Lemma 1, g cannot see any entry (true, v’) with v’ # vin Sy if p has already written (true, v) to Sy). There-
fore, q’s scan of Sp must happen before p’s write to S;. Furthermore, g4’s scan of S; must include some entry
e = (-,v') with v’ # v (written either by g or some other process). But then p’s scan of S, (which is after
p’s write to Sy and therefore after g’s scan of Sy) will also include e, and thus p cannot commit v. We have
reached a contradiction.

Termination The code does not contain any waiting, loops, or goto statements, and the snapshot objects are
wait-free, so every correct process will return in a finite number of steps.



