
Concurrent Computing December 16, 2024

Solutions to Exercise 11

Problem 1.
Consider the atomic commit-adopt object, which has the following specification. Every process p pro-

poses an input value v to such an object and obtains an output, which consists of a pair (dec, val); dec can
be either commit or adopt. The following properties are satisfied:

• Validity: If a process obtains output (commit, v) or (adopt, v), then v was proposed by some process.

• Commitment: If every process proposes the same value, then no process may output (adopt, v) for
any value v.

• Agreement: If a process p outputs (commit, v) and a process q outputs (commit, v′) or (adopt, v′),
then v = v′.

• Termination: Every correct process eventually obtains an output.

Consider the following implementation of an atomic commit-adopt object from atomic wait-free snapshot
objects and atomic MRMW registers:

• Using two shared snapshot objects: S1 and S2 of size n, initialized to (⊥,⊥, . . . ,⊥);

• Using two local arrays of registers: ai and bi of size n.

The implementation is as follows:

propose(v)

S_1.updatei, v;

a_i := S_1.snapshot();

if every non-⊥ value in a_i is v then

x := (true, v);

else

v := max(a_i); // max(arr) returns the greatest non-⊥ element in array arr

x := (false, v);

S_2.update(i, x);

b_i := S_2.snapshot();

if every non-⊥ value in b_i is equal to (true, v) then

return (commit, v);

if some value in b_i is equal to (true, val) for some val then

return (adopt, val);

return (adopt, v);

Is the above implementation correct (does it satisfy the commit-adopt properties)? Justify your answer.

p-1



Solution

Yes, the implementation is correct.

Validity All non-⊥ values in S1 are proposed values. Therefore, if a process p writes (true, v) or (false, v)
in S2, then v must have been proposed by some process q (possibly by p itself). Since the output value of a
process is taken either from S1 or from S2, validity is satisfied.

Lemma 1 If S2 contains two entries (true, v1) and (true, v2), then v1 = v2.

Proof Assume not. Since every process writes in S1 and S2 at most once, it must be that some pro-
cess p1 wrote (true, v1) and some other process p2 wrote (true, v2). Thus, it must be that p1 wrote v1 in S1,
took a snapshot of S1 and only saw v1 in that snapshot. Similarly, it must be that p2 wrote v2 in S1, took a
snapshot of S1 and only saw v2 in that snapshot. This is impossible: since the snapshot object is atomic and
the processes update S1 before scanning, it must be that either p1 saw p2’s value, or vice-versa. We have
reached a contradiction.

Commitment Assume all proposed values are equal. Then no process can write (false, ·) in S2; S2 contains
only entries of the form (true, ·). By Lemma 1, all such entries have equal values, so all processes that return
must commit.

Agreement In order for a process p to commit v, p must write v to S1, scan S1 and see only entries equal
to v; p must then write (true, v) to S2, scan S2 and see only entries equal to (true, v) and finally return
(commit, v).

Assume by contradiction that process p commits v and some process q commits or adopts v′ ̸= v. q’s
scan of S2 cannot include the (true, v) entry written by p, otherwise q would adopt v (remember that by
Lemma 1, q cannot see any entry (true, v′) with v′ ̸= v in S2 if p has already written (true, v) to S2). There-
fore, q’s scan of S2 must happen before p’s write to S2. Furthermore, q’s scan of S2 must include some entry
e = (·, v′) with v′ ̸= v (written either by q or some other process). But then p’s scan of S2 (which is after
p’s write to S2 and therefore after q’s scan of S2) will also include e, and thus p cannot commit v. We have
reached a contradiction.

Termination The code does not contain any waiting, loops, or goto statements, and the snapshot objects are
wait-free, so every correct process will return in a finite number of steps.

p-2


