
Byzantine-Robustness in Federated Learning
Learning with adversarial data

Rafael Pinot, Sorbonne Université
Nirupam Gupta, University of Copenhagen



What is Federated Learning (FL)?



Supervised Learning (Example of Image Classification)

• Assumption: A ground-truth distribution D linking X and Y
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Supervised Learning (Example of Image Classification)

• Assumption: A ground-truth distribution D linking X and Y

• Goal: Use D to design h : X → R matching images X to labels Y

1) Define a loss function ℓ : R× Y → R+ and a hypothesis class H
2) Find h ∈ H to minimize the expected error E(x,y)∼D [ℓ (h(x), y)]
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Supervised Training in the Centralized Setting

• Given a set of m training examples:
S := {(x1, y1), ..., (xm, ym)} ∼ Dm

• Parameterized H := {hθ | θ ∈ Rd}

• Minimize the empirical risk (ERM):

L(θ) := 1

m

m∑
i=1

ℓ (hθ (xi) , yi)

Learning objective: Assuming L admits a minimum on Rd, we seek an
ε-approximate solution to the ERM, i.e., θ̂ s.t.

L
(
θ̂
)
− L∗ ≤ ε, where L∗ = min

θ∈Rd
L (θ) .
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Stochastic Gradient Descent (SGD) in the Centralized Setting

• Simple and efficient method

• Well understood theoretically

• Massively used in practice
(especially for deep learning tasks)

• Start with an arbitrary parameter θ1
• At every step t = 1, · · · , T do:

• Sample a data point (x, y) ∼ Unif (S)

• Compute a stochastic gradient gt := ∇θt ℓ (hθt (x) , y)

• Update the parameter θt+1 = θt − γtgt
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Federated/Distributed Machine Learning

1. Datacenter distributed learning

→ Train a model on a single massive dataset
→ Distribution limits computations/storage

2. Cross-silo distributed/federated learning

→ Datacenters are geo-distributed
→ Keeping data locally is safer

3. Cross-device distributed/federated learning

→ Same distribution/security requirement
→ Less computational power per device
→ More diversity in the data (heterogeneity)
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Federated Machine Learning: Problem Statement

• Server-based communications with n

nodes and a (trusted) central server

• Nodes hold the data locally (Si)i∈[n]

Li(θ) :=
1

| Si |
∑

(x,y)∈Si

ℓ (hθ(x), y)

• The server coordinates the training

Training objective: Finding an ε-approximate solution to the ERM for the
loss function defined as L(θ) := 1

n

∑n
i=1 Li(θ)
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Some Additional Information on the Problem Statement (1/2)

The problem is L-smooth and µ-PL

• ∃L < ∞ s.t. for all θ, θ′ ∈ Rd and any (x, y) ∈ X × Y , we have

∥∇ℓ(hθ(x), y)−∇ℓ(hθ′(x), y)∥ ≤ L
∥∥θ − θ′

∥∥.

• ∃µ < ∞ s.t. for all θ ∈ Rd, we have

∥∇L(θ)∥2 ≥ 2µ (L(θ)− L∗) (Polyak’s inequality)

→ Numerical examples neural-network for image classification
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Some Additional Information on the Problem Statement (2/2)

• All local datasets have the same size m (everything can be adapted)
→ We make this assumption, just for simplicity

• Stochastic gradients have bounded stochasticity

There exists σ < ∞ s.t. for all i ∈ [n] and θ ∈ Rd,

1

m

∑
(x,y)∈Si

∥∇ℓ (hθ(x), y)−∇Li(θ)∥2 ≤ σ2

• Bounded gradient heterogeneity between the nodes

There exists G < ∞ s.t. for all θ ∈ Rd,

1

n

∑
i∈[n]

∥∇Li(θ)−∇L(θ)∥2 ≤ G2
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Distributed Stochastic Gradient Descent (DSGD)

At every step t = 1, . . . , T

• node i computes & sends
g
(i)
t = ∇θt ℓ (hθt (xi) , yi) ,

where (xi, yi) ∼ Unif(Si).
• Server updates & broadcasts

θt+1 = θt − γt
1

n

n∑
i=1

g
(i)
t

Standard convergence see e.g. Koloskova et al. (2020) :

For some (γt)t∈[T ], θ̂ gives an ε-approximate solution (in expectation), with

ε ∈ O
(
KLσ

2

nT

)
, and KL :=

L

µ
.
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Distributed Learning is So Great!

• So distributed learning is easy to implement, efficient and trendy ...

• This means that we can use it for many great applications
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Distributed Learning is So Great!

• So distributed learning is easy to implement, efficient and trendy ...

• This means that we can use it for many great applications

AI-driven Technologies Decision-making Tools Personal Devices

1

1
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Things Can Go Wrong 1/2
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Things Can Go Wrong 2/2

Things can go wrong in many ways ...

Trustworthy
Machine Learning

Accountability

Robustness

ReliabilityFairness 

Machine Bias 

Interpretability

Privacy

Data Protection

Data Storage

• Since the 80’s: privacy preserving
database analysis is a primary concern

• More recently: fairness/robustness to
adversarial examples

• Some are more specific to Federated
Learning (Byzantine failures)
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Robustness to Byzantine Nodes



In Practice, Misbehaving Nodes Are Inevitable

• Software bugs and Hardware crashes can occur
→ Add errors/arbitrary values in the computations

• Some nodes may have poisoned or irrelevant data or can get hacked

Challenge: We do not know which nodes may misbehave (nor how)
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The Byzantine Threat Model

• We take the Byzantine threat model
inherited from Lamport et al. (1982)

• Up to f < n/2 nodes may be bad

• When i is Byzantine we have

g
(i)
t = ∗, ∀t ∈ [T ] (Synchrony)

New objective: Denote H the set of honest (non-Byzantine) nodes. We seek
an ε-approximate solution to the ERM for the loss function defined as

LH(θ) :=
1

n− f

∑
i∈H

Li(θ) (a.k.a. (f, ε)-Byzantine resilience)

→ Despite the f Byzantine nodes (and not knowingH a priori)
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Is DSGD Byzantine Robust?

Honest

Honest

Honest Average

Byzantine

Recall update rule at the server:

θt+1 = θt − γt
1

n

n∑
i=1

g
(i)
t

Hence is arbitrarily manipulable by
a single Byzantine node.

A standard approach to confer Byzantine robustness:

Replace the averaging with a non-linear aggregation rule A : Rd×n → Rd:

θt+1 = θt − γt A
(
g
(1)
t , . . . , g

(n)
t

)

→ Choosing A is close to the robust mean estimation problem
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What are the Bottlenecks ?

• Some robust estimation schemes can be adapted, but beware of
assumptions on the distributions

• We have to be careful about of the model drift accumulation

Two main bottlenecks: uncertainty and heterogeneity

Heterogeneity

Uncertainty

→ This only arises due to the presence of Byzantine nodes
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What Can We Do About Uncertainty ?



Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med)
→ Compute the median per coordinate.

= 3 1 3 6 8
6 2 4 3 1

3
3 ((((

Coordinate-wise trimmed mean (CW-TM)
→ Remove f biggest and f smallest coordinates
on each dimension, and then average.

= 3 1 3 6 8
6 2 4 3 1

4
3 ((((

Both these solutions have been analyzed, e.g., in Yin et al. (2018).

LPSM’s Statistics Seminar 2024 – A Small Tutorial on Byzantine-Robustness 17



Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med)
→ Compute the median per coordinate.

= 3 1 3 6 8
6 2 4 3 1

3
3 ((((

Coordinate-wise trimmed mean (CW-TM)
→ Remove f biggest and f smallest coordinates
on each dimension, and then average.

= 3 1 3 6 8
6 2 4 3 1

4
3 ((((

Both these solutions have been analyzed, e.g., in Yin et al. (2018).

LPSM’s Statistics Seminar 2024 – A Small Tutorial on Byzantine-Robustness 17



Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med)
→ Compute the median per coordinate.

= 3 1 3 6 8
6 2 4 3 1

3
3 ((((

Coordinate-wise trimmed mean (CW-TM)
→ Remove f biggest and f smallest coordinates
on each dimension, and then average.

= 3 1 3 6 8
6 2 4 3 1

4
3 ((((

Both these solutions have been analyzed, e.g., in Yin et al. (2018).

LPSM’s Statistics Seminar 2024 – A Small Tutorial on Byzantine-Robustness 17



Some Famous Aggregation Rules 2/2

More sophisticated aggregations:

Geometric median Chen et al. (2017)
→ Output a vector that realizes the geometric me-
dian of the send gradients, i.e.,

GM (v1, . . . , vn) ∈ argminv∈Rd

n∑
i=1

∥v − vi∥.

MDA Rousseeuw (1985)
→ Choose a set S∗ of n−f indices with the small-
est diameter. Then average over S∗, i.e.,

MDA (v1, . . . , vn) =
1

n− f

∑
i∈S∗

vi.

But also MeaMed Xie et al. (2018), Krum, Multi-Krum Blanchard et al. (2017) ...
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A First Step Towards Resilience

Common notion of (f, κ)-robust averaging Allouah et al. (2023) :

For any n vectors v1, . . . , vn ∈ Rd and any subset S ⊆ [n] of size n− f ,

∥A (v1, . . . , vn)− vS∥2 ≤ κ

n− f

∑
i∈S

∥vi − vS∥2,

where vS := 1
n−f

∑
i∈S vi

Quick sanity check: If σ2 = 0 and G = 0 the honest workers are identical
(full gradients on identical data)∑

i∈S

∥vi − vS∥2 = 0

→ The aggregation rule should mimic the majority voting scheme.
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→ This definition is satisfied by many existing aggregation rules.

Agg. CW-TM GM CW-Med L.B.

κ O
(

f
n−2f

)
O

(
1 + f

n−2f

)
O

(
1 + f

n−2f

)
Ω
(

f
n−2f

)
Applies to Krum, Multi-Krum Blanchard et al. (2017) and MeaMed Xie et al. (2018).
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∥A (v1, . . . , vn)− vS∥2 ≤ κ

n− f

∑
i∈S

∥vi − vS∥2,

where vS := 1
n−f

∑
i∈S vi

Convergence result in the homogeneous case (G = 0):

If A is an (f, κ)-robust averaging, for some (γt)t∈[T ], the algorithm satisfies
(f, ε)-Byzantine resilience with

ε ∈ O
(

KLHσ2

(n− f)T
+ κσ2

)
→ This incompressible error might be problematic in practice.
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Some Numerical Observations: Model Setting

Learning task: MNIST hand-written digit image classification task with
n = 15 nodes out of which f = 5 might be Byzantine.

Adversarial behaviors: The Byzantine nodes apply either of the following:

• Label-flipping: shift the label of each image 0123456789→ 1234567890
• Sign-flipping: send the inverse of the local gradient g(i)

t → −g
(i)
t
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Some Numerical Observations: The Results

Training accuracy of a CNN along the learning procedure on MNIST. On the
left label-flipping attack and on the right sign-flipping attack.
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Why is There Still a Gap?

Recall the challenge we focus on here:

Let’s reduce uncertainty!

• Option 1: Reduce the noise by using larger mini-batches?

Inflates the
computationnal cost of the method quite a lot.

• Option 2: Learn from past gradients using momentum? Obviously much
better since this is what I will present in the next slide.
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Controlling Gradient Variance with Momentum

• Honest node i computes

m
(i)
t = βtm

(i)
t−1 + (1− βt)g

(i)
t ,

where m
(i)
0 = 0 and βt ∈ [0, 1).

• Server updates & broadcasts

θt+1 = θt − γtA
(
m

(1)
t , . . . , m

(n)
t

)

Using the above algorithm (with βt ≡ β) we have

1

H

∑
i∈H

E
[∥∥∥m(i)

t −mt

∥∥∥2
]
∈ O

(
1− β

1 + β
σ2

)
, with mt :=

1

(n− f)

∑
i∈H

m
(i)
t .

→ βt is driving the “noise reduction” but also creates a bias.
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Controlling Gradient Variance with Momentum

• Honest node i computes

m
(i)
t = βtm

(i)
t−1 + (1− βt)g

(i)
t ,

where m
(i)
0 = 0 and βt ∈ [0, 1).

• Server updates & broadcasts

θt+1 = θt − γtA
(
m

(1)
t , . . . , m

(n)
t

)

Convergence result in the homogeneous case Farhadkhani et al. (2022, 2023):

Assume A is an (f, κ)-robust averaging. For some (γt)t∈[T ], setting
βt := 1− cγt, ∀t ∈ [T ], the algorithm satisfies (f, ε)-Byzantine resilience with

ε ∈ O
((

κ+
1

(n− f)

)
KLHσ2

T

)
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Impact of the Momentum on Byzantine Resilience
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Same setting as before. Up without momentum (βt ≡ 0)

and down with momentum (βt ≡ 0.99)
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What About Heterogeneity?



What are the Bottlenecks? (repetitio)

• Some robust estimation schemes can be adapted, but beware of
assumptions on the distributions

• We have to be careful about of the model drift accumulation

Two main bottlenecks: uncertainty and heterogeneity

Heterogeneity

Uncertainty

?
→ This only arises due to the presence of Byzantine nodes
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What Do We Mean By Heterogeneity?

(Updated) Heterogeneity Assumption: There exists G2 < ∞ s.t. ∀θ ∈ Rd,

1

n− f

∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ G2
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Simulating Heterogeneity

For each class y ∈ Y , sample the proportion of this class’ data-points held
by each client using a symmetric Dirichlet distribution Dn(α), with α > 0.

→ Sampling in point from the simplex with concentration driven by α.
(α = 1 we get uniform sampling on the simplex)
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Some Numerical Observations on Heterogeneity
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Some Numerical Observations on Heterogeneity

Training CNN on n = 17 nodes where f = 4 nodes are Byzantine. MNIST
dataset split using Dirichlet distribution.
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Does This Appear in Theory?

Lower bound see e.g. Karimireddy et al. (2022):

There exists a set of loss functions satisfying our assumptions for
which we cannot reach an ϵ-solution unless ϵ ∈ Ω

(
f
n
G2

)
.

• Similar to uncertainty (indistinguishability)

• This is a very pessimistic bound

Matching upper bound see e.g. Allouah et al. (2023):

Using the previous algorithm with momentum and A a (κ, f)-robust
averaging, we have ϵ ∈ O

(
κG2

)
.
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Heterogeneity is an Open Problem

Is this not too pessimistic ?

• Uniform bound on the entire space Rd

• Some parts of the space are more
interesting than others.

• Even criticized in federated learning
standard settings Wang et al. (2022)

We need more realistic (tighter) measurements of heterogeneity in
distributed learning (only on the optima, or modular bounds).
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Other Open Problems I Did Not Talk About

• Existing research is mostly focused on first-order methods
→ Little has been done on higher order/gradient free methods

• Similarly, research is mostly focused on federated settings
→ Little (a bit more though) has been done on decentralized methods

• Here we mainly focus on the robustness of the algorithm at training time
→ What about generalization? How to be robust to test-time triggered

attacks such as ”Backdoor attacks”, see e.g. Nguyen et al. (2023)

• We did not mention other concerns (privacy, fairness, bias, etc.)
→ Seem conflicting, but ultimately, we need to combine them.
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Thanks for listening!
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