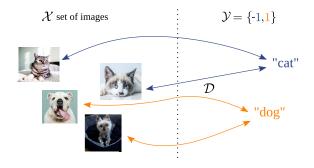
Byzantine-Robustness in Federated Learning

Learning with adversarial data

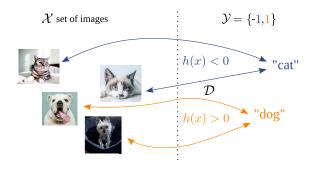
Rafael Pinot, Sorbonne Université Nirupam Gupta, University of Copenhagen What is Federated Learning (FL)?

Supervised Learning (Example of Image Classification)



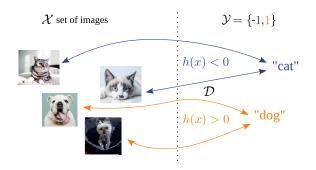
 \bullet Assumption: A ground-truth distribution ${\cal D}$ linking ${\cal X}$ and ${\cal Y}$

Supervised Learning (Example of Image Classification)



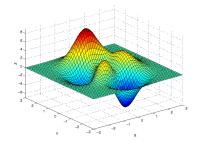
- ullet Assumption: A ground-truth distribution ${\mathcal D}$ linking ${\mathcal X}$ and ${\mathcal Y}$
- ullet Goal: Use $\mathcal D$ to design $h:\mathcal X\to\mathbb R$ matching images $\mathcal X$ to labels $\mathcal Y$

Supervised Learning (Example of Image Classification)



- ullet Assumption: A ground-truth distribution ${\mathcal D}$ linking ${\mathcal X}$ and ${\mathcal Y}$
- Goal: Use $\mathcal D$ to design $h:\mathcal X\to\mathbb R$ matching images $\mathcal X$ to labels $\mathcal Y$
 - 1) Define a loss function $\ell:\mathbb{R}\times\mathcal{Y}\to\mathbb{R}^+$ and a hypothesis class \mathcal{H}
 - 2) Find $h \in \mathcal{H}$ to minimize the expected error $\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\ell\left(h(x),y\right)\right]$

Supervised Training in the Centralized Setting



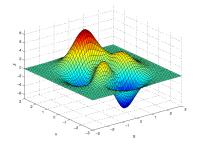
Given a set of m training examples:

$$S := \{(x_1, y_1), ..., (x_m, y_m)\} \sim \mathcal{D}^m$$

- Parameterized $\mathcal{H} := \{h_{\theta} \mid \theta \in \mathbb{R}^d\}$
- Minimize the empirical risk (ERM):

$$\mathcal{L}(\theta) := \frac{1}{m} \sum_{i=1}^{m} \ell(h_{\theta}(x_i), y_i)$$

Supervised Training in the Centralized Setting



• Given a set of *m* training examples:

$$S := \{(x_1, y_1), ..., (x_m, y_m)\} \sim \mathcal{D}^m$$

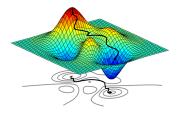
- Parameterized $\mathcal{H} := \{h_{\theta} \mid \theta \in \mathbb{R}^d\}$
- Minimize the empirical risk (ERM):

$$\mathcal{L}(\theta) := \frac{1}{m} \sum_{i=1}^{m} \ell(h_{\theta}(x_i), y_i)$$

Learning objective: Assuming $\mathcal L$ admits a minimum on $\mathbb R^d$, we seek an ε -approximate solution to the ERM, i.e., $\hat \theta$ s.t.

$$\mathcal{L}\left(\hat{\theta}\right) - \mathcal{L}^* \leq \varepsilon$$
, where $\mathcal{L}^* = \min_{\theta \in \mathbb{R}^d} \mathcal{L}\left(\theta\right)$.

Stochastic Gradient Descent (SGD) in the Centralized Setting



- Simple and efficient method
- Well understood theoretically
- Massively used in practice (especially for deep learning tasks)
- ullet Start with an arbitrary parameter $heta_1$
- At every step $t=1,\cdots,T$ do:
 - Sample a data point $(x,y) \sim \mathsf{Unif}(\mathcal{S})$
 - Compute a stochastic gradient $g_t := \nabla_{\theta_t} \ell \left(h_{\theta_t} \left(x \right), y \right)$
 - ullet Update the parameter $heta_{t+1} = heta_t \gamma_t g_t$

Federated/Distributed Machine Learning

- 1. Datacenter distributed learning
 - → Train a model on a single massive dataset
 - ightarrow Distribution limits computations/storage

Federated/Distributed Machine Learning

- 1. Datacenter distributed learning
 - → Train a model on a single massive dataset
 - ightarrow Distribution limits computations/storage

2. Cross-silo distributed/federated learning

- → Datacenters are **geo-distributed**
- ightarrow Keeping data locally is safer

Federated/Distributed Machine Learning

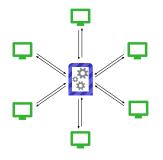
- 1. Datacenter distributed learning
 - → Train a model on a single massive dataset
 - ightarrow Distribution limits computations/storage

2. Cross-silo distributed/federated learning

- → Datacenters are **geo-distributed**
- ightarrow Keeping data locally is safer

- 3. Cross-device distributed/federated learning
 - → Same distribution/security requirement
 - → Less computational power per device
 - → More diversity in the data (heterogeneity)

Federated Machine Learning: Problem Statement

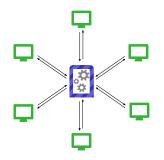


- Server-based communications with n nodes and a (trusted) central server
- ullet Nodes hold the data locally $(\mathcal{S}_i)_{i\in[n]}$

$$\mathcal{L}_{i}(\theta) := \frac{1}{\mid \mathcal{S}_{i} \mid} \sum_{(x,y) \in \mathcal{S}_{i}} \ell \left(h_{\theta}(x), y \right)$$

• The server coordinates the training

Federated Machine Learning: Problem Statement



- Server-based communications with n nodes and a (trusted) central server
- ullet Nodes hold the data locally $(\mathcal{S}_i)_{i\in[n]}$

$$\mathcal{L}_{i}(\theta) := \frac{1}{\mid \mathcal{S}_{i} \mid} \sum_{(x,y) \in \mathcal{S}_{i}} \ell\left(h_{\theta}(x), y\right)$$

• The server coordinates the training

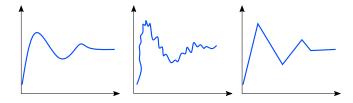
<u>Training objective:</u> Finding an ε -approximate solution to the ERM for the loss function defined as $\mathcal{L}(\theta) := \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i(\theta)$

The problem is $L\operatorname{-smooth}$ and $\mu\operatorname{-PL}$

The problem is L-smooth and μ -PL

• $\exists L<\infty$ s.t. for all $\theta,\;\theta'\in\mathbb{R}^d$ and any $(x,y)\in\mathcal{X}\times\mathcal{Y}$, we have

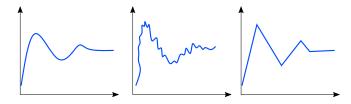
$$\|\nabla \ell(h_{\theta}(x), y) - \nabla \ell(h_{\theta'}(x), y)\| \le L \|\theta - \theta'\|.$$



The problem is L-smooth and μ -PL

• $\exists L<\infty$ s.t. for all $\theta,\;\theta'\in\mathbb{R}^d$ and any $(x,y)\in\mathcal{X}\times\mathcal{Y}$, we have

$$\|\nabla \ell(h_{\theta}(x), y) - \nabla \ell(h_{\theta'}(x), y)\| \le L \|\theta - \theta'\|.$$



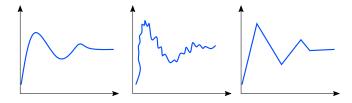
• $\exists \mu < \infty$ s.t. for all $\theta \in \mathbb{R}^d$, we have

$$\|\nabla \mathcal{L}(\theta)\|^2 \ge 2\mu \left(\mathcal{L}(\theta) - \mathcal{L}^*\right)$$
 (Polyak's inequality)

The problem is $L\operatorname{-smooth}$ and $\mu\operatorname{-PL}$

• $\exists L < \infty$ s.t. for all θ , $\theta' \in \mathbb{R}^d$ and any $(x,y) \in \mathcal{X} \times \mathcal{Y}$, we have

$$\|\nabla \ell(h_{\theta}(x), y) - \nabla \ell(h_{\theta'}(x), y)\| \le L \|\theta - \theta'\|.$$



• $\exists \mu < \infty$ s.t. for all $\theta \in \mathbb{R}^d$, we have

$$\|\nabla \mathcal{L}(\theta)\|^2 \ge 2\mu \left(\mathcal{L}(\theta) - \mathcal{L}^*\right)$$
 (Polyak's inequality)

→ Numerical examples neural-network for image classification

- All local datasets have the same size m (everything can be adapted)
 - ightarrow We make this assumption, just for simplicity

- All local datasets have the same size m (everything can be adapted)
 → We make this assumption, just for simplicity
- Stochastic gradients have bounded stochasticity

There exists $\sigma < \infty$ s.t. for all $i \in [n]$ and $\theta \in \mathbb{R}^d$,

$$\frac{1}{m} \sum_{(x,y) \in \mathcal{S}_i} \|\nabla \ell (h_{\theta}(x), y) - \nabla \mathcal{L}_i(\theta)\|^2 \le \sigma^2$$

- All local datasets have the same size m (everything can be adapted)
 → We make this assumption, just for simplicity
- Stochastic gradients have bounded stochasticity

There exists
$$\sigma < \infty$$
 s.t. for all $i \in [n]$ and $\theta \in \mathbb{R}^d$,

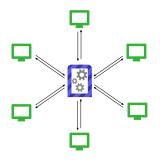
$$\frac{1}{m} \sum_{(x,y) \in \mathcal{S}_i} \left\| \nabla \ell \left(h_{\theta}(x), y \right) - \nabla \mathcal{L}_i(\theta) \right\|^2 \le \sigma^2$$

Bounded gradient heterogeneity between the nodes

There exists
$$G < \infty$$
 s.t. for all $\theta \in \mathbb{R}^d$,

$$\frac{1}{n} \sum_{i \in [n]} \|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}(\theta)\|^2 \le G^2$$

Distributed Stochastic Gradient Descent (DSGD)

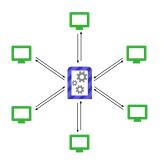


At every step $t = 1, \dots, T$

- node i computes & sends $g_t^{(i)} = \nabla_{\theta_t} \ell \left(h_{\theta_t} \left(x_i \right), y_i \right),$ where $(x_i, y_i) \sim \mathsf{Unif}(\mathcal{S}_i).$
- Server updates & broadcasts

$$\theta_{t+1} = \theta_t - \gamma_t \frac{1}{n} \sum_{i=1}^n g_t^{(i)}$$

Distributed Stochastic Gradient Descent (DSGD)



At every step $t = 1, \ldots, T$

- node i computes & sends $g_t^{(i)} = \nabla_{\theta_t} \ell\left(h_{\theta_t}\left(x_i\right), y_i\right),$ where $(x_i, y_i) \sim \mathsf{Unif}(\mathcal{S}_i)$.
- Server updates & broadcasts

$$\theta_{t+1} = \theta_t - \gamma_t \frac{1}{n} \sum_{i=1}^n g_t^{(i)}$$

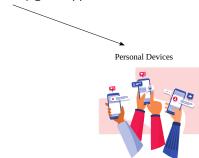
Standard convergence see e.g. Koloskova et al. (2020):

For some $(\gamma_t)_{t\in[T]}$, $\hat{\theta}$ gives an arepsilon-approximate solution (in expectation), with

$$\varepsilon \in \mathcal{O}\left(rac{\mathcal{K}_{\mathcal{L}}\sigma^2}{{}^{n}T}
ight), ext{ and } \mathcal{K}_{\mathcal{L}} := rac{L}{\mu}.$$

- So distributed learning is easy to implement, efficient and trendy ...
- This means that we can use it for many **great applications**

- So distributed learning is easy to implement, efficient and trendy ...
- This means that we can use it for many **great applications**



- So distributed learning is easy to implement, efficient and trendy ...
- This means that we can use it for many great applications

- So distributed learning is easy to implement, efficient and trendy ...
- This means that we can use it for many great applications

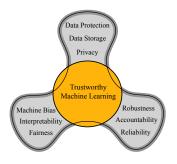
Things Can Go Wrong 1/2

Things Can Go Wrong 2/2

Things can go wrong in many ways \dots

Things Can Go Wrong 2/2

Things can go wrong in many ways ...



- Since the 80's: privacy preserving database analysis is a primary concern
- More recently: fairness/robustness to adversarial examples
- Some are more specific to Federated Learning (Byzantine failures)

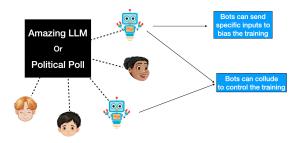
Robustness to Byzantine Nodes

In Practice, Misbehaving Nodes Are Inevitable

- Software bugs and Hardware crashes can occur
 - → Add errors/arbitrary values in the computations

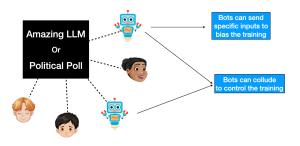
In Practice, Misbehaving Nodes Are Inevitable

- Software bugs and Hardware crashes can occur
 - → Add errors/arbitrary values in the computations
- Some nodes may have poisoned or irrelevant data or can get hacked



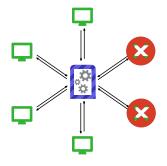
In Practice, Misbehaving Nodes Are Inevitable

- Software bugs and Hardware crashes can occur
 - → Add errors/arbitrary values in the computations
- Some nodes may have poisoned or irrelevant data or can get hacked



Challenge: We do not know which nodes may misbehave (nor how)

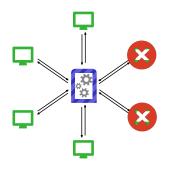
The Byzantine Threat Model



- We take the Byzantine threat model inherited from Lamport et al. (1982)
- Up to f < n/2 nodes may be bad
- When *i* is Byzantine we have

$$g_t^{(i)} = *, \ \forall t \in [T]$$
 (Synchrony)

The Byzantine Threat Model



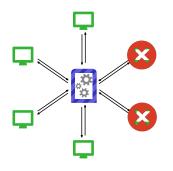
- We take the Byzantine threat model inherited from Lamport et al. (1982)
- Up to f < n/2 nodes may be bad
- When *i* is Byzantine we have

$$g_t^{(i)} = *, \ \forall t \in [T]$$
 (Synchrony)

New objective: Denote H the set of honest (non-Byzantine) nodes. We seek an ε -approximate solution to the ERM for the loss function defined as

$$\mathcal{L}_H(\theta) := \frac{1}{n-f} \sum_{i \in H} \mathcal{L}_i(\theta)$$
 (a.k.a. (f, ε) -Byzantine resilience)

The Byzantine Threat Model



- We take the Byzantine threat model inherited from Lamport et al. (1982)
- Up to f < n/2 nodes may be bad
- When *i* is Byzantine we have

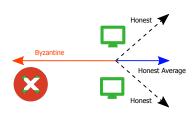
$$g_t^{(i)} = *, \; \forall t \in [T] \quad \textit{(Synchrony)}$$

New objective: Denote H the set of honest (non-Byzantine) nodes. We seek an ε -approximate solution to the ERM for the loss function defined as

$$\mathcal{L}_H(\theta) := \frac{1}{n-f} \sum_{i \in H} \mathcal{L}_i(\theta)$$
 (a.k.a. (f, ε) -Byzantine resilience)

 \rightarrow Despite the f Byzantine nodes (and not knowing H a priori)

Is DSGD Byzantine Robust?

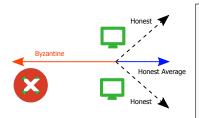


Recall update rule at the server:

$$\theta_{t+1} = \theta_t - \gamma_t \frac{1}{n} \sum_{i=1}^n g_t^{(i)}$$

Hence is arbitrarily manipulable by a **single** Byzantine node.

Is DSGD Byzantine Robust?



Recall update rule at the server:

$$\theta_{t+1} = \theta_t - \gamma_t \frac{1}{n} \sum_{i=1}^n g_t^{(i)}$$

Hence is arbitrarily manipulable by a **single** Byzantine node.

A standard approach to confer Byzantine robustness:

Replace the averaging with a **non-linear** aggregation rule $A: \mathbb{R}^{d \times n} \to \mathbb{R}^d$:

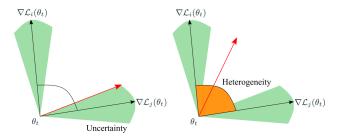
$$\theta_{t+1} = \theta_t - \gamma_t A\left(g_t^{(1)}, \dots, g_t^{(n)}\right)$$

 \rightarrow Choosing A is close to the **robust mean estimation** problem

What are the Bottlenecks?

- Some robust estimation schemes can be adapted, but beware of assumptions on the distributions
- We have to be careful about of the model drift accumulation

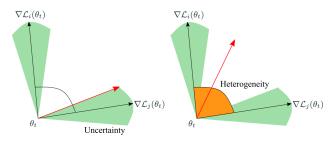
Two main bottlenecks: uncertainty and heterogeneity



What are the Bottlenecks?

- Some robust estimation schemes can be adapted, but beware of assumptions on the distributions
- We have to be careful about of the model drift accumulation

Two main bottlenecks: uncertainty and heterogeneity

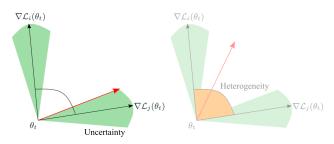


→ This only arises due to the presence of Byzantine nodes

What are the Bottlenecks?

- Some robust estimation schemes can be adapted, but beware of assumptions on the distributions
- We have to be careful about of the model drift accumulation

Two main bottlenecks: uncertainty and heterogeneity



→ This only arises due to the presence of Byzantine nodes

What Can We Do About Uncertainty ?

Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med)

ightarrow Compute the median per coordinate.

$$\mathsf{CW}\mathsf{-Med} \begin{pmatrix} 3 & 1 & 3 & 6 & 8 \\ 6 & 2 & 4 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med)

 \rightarrow Compute the median per coordinate.

$$\mathsf{CW}\mathsf{-Med} \begin{pmatrix} 3 & 1 & 3 & 6 & 8 \\ 6 & 2 & 4 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

Coordinate-wise trimmed mean (CW-TM)

 \rightarrow Remove f biggest and f smallest coordinates on each dimension, and then average.

$$CW-TM\begin{pmatrix} 3 \times 3 & 6 \times \\ \times 2 & 4 & 3 \times \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n = 5, f = 1, d = 2):

Coordinate-wise median (CW-Med)

 $\ensuremath{\rightarrow}$ Compute the median per coordinate.

$$\mathsf{CW}\mathsf{-Med} \begin{pmatrix} 3 \ 1 \ 3 \ 6 \ 8 \\ 6 \ 2 \ 4 \ 3 \ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

Coordinate-wise trimmed mean (CW-TM)

 \rightarrow Remove f biggest and f smallest coordinates on each dimension, and then average.

$$CW-TM\begin{pmatrix} 3 \times 3 & 6 \times \\ \times 2 & 4 & 3 \times \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Both these solutions have been analyzed, e.g., in Yin et al. (2018).

Some Famous Aggregation Rules 2/2

More sophisticated aggregations:

Geometric median Chen et al. (2017)

 \rightarrow Output a vector that realizes the geometric median of the send gradients, i.e.,

$$\mathsf{GM}(v_1,\ldots,v_n) \in \mathsf{argmin}_{v \in \mathbb{R}^d} \sum_{i=1}^n \|v - v_i\|.$$

Some Famous Aggregation Rules 2/2

More sophisticated aggregations:

Geometric median Chen et al. (2017)

 \rightarrow Output a vector that realizes the geometric median of the send gradients, i.e.,

$$\mathsf{GM}\left(v_1,\ldots,v_n\right) \in \mathsf{argmin}_{v \in \mathbb{R}^d} \sum_{i=1}^n \|v - v_i\|.$$

MDA Rousseeuw (1985)

 \rightarrow Choose a set S^* of n-f indices with the smallest diameter. Then average over S^* , i.e.,

$$MDA(v_1, ..., v_n) = \frac{1}{n-f} \sum_{i \in S^*} v_i.$$

Some Famous Aggregation Rules 2/2

More sophisticated aggregations:

Geometric median Chen et al. (2017)

 \rightarrow Output a vector that realizes the geometric median of the send gradients, i.e.,

$$\mathsf{GM}\left(v_1,\ldots,v_n\right) \in \mathsf{argmin}_{v \in \mathbb{R}^d} \sum_{i=1}^n \|v - v_i\|.$$

MDA Rousseeuw (1985)

 \rightarrow Choose a set S^* of n-f indices with the smallest diameter. Then average over S^* , i.e.,

$$MDA(v_1, ..., v_n) = \frac{1}{n-f} \sum_{i \in S^*} v_i.$$

But also MeaMed Xie et al. (2018), Krum, Multi-Krum Blanchard et al. (2017) ...

Common notion of (f, κ) -robust averaging Allouah et al. (2023):

For any n vectors $v_1, \ldots, v_n \in \mathbb{R}^d$ and any subset $S \subseteq [n]$ of size n-f,

$$||A(v_1,...,v_n) - \overline{v}_S||^2 \le \frac{\kappa}{n-f} \sum_{i \in S} ||v_i - \overline{v}_S||^2,$$

where
$$\overline{v}_S := \frac{1}{n-f} \sum_{i \in S} v_i$$

Common notion of (f, κ) -robust averaging Allouah et al. (2023) :

For any n vectors $v_1, \ldots, v_n \in \mathbb{R}^d$ and any subset $S \subseteq [n]$ of size n - f,

$$\|A(v_1,\ldots,v_n)-\overline{v}_S\|^2 \leq \frac{\kappa}{n-f} \sum_{i \in S} \|v_i-\overline{v}_S\|^2,$$

where $\overline{v}_S := \frac{1}{n-f} \sum_{i \in S} v_i$

Quick sanity check: If $\sigma^2 = 0$ and G = 0 the honest workers are identical (full gradients on identical data)

$$\sum_{i \in S} \left\| v_i - \overline{v}_S \right\|^2 = 0$$

→ The aggregation rule should mimic the majority voting scheme.

Common notion of (f, κ) -robust averaging Allouah et al. (2023) :

For any n vectors $v_1, \ldots, v_n \in \mathbb{R}^d$ and any subset $S \subseteq [n]$ of size n - f,

$$\|A(v_1,\ldots,v_n)-\overline{v}_S\|^2 \leq \frac{\kappa}{n-f}\sum_{i\in S}\|v_i-\overline{v}_S\|^2,$$

where
$$\overline{v}_S := \frac{1}{n-f} \sum_{i \in S} v_i$$

→ This definition is satisfied by many existing aggregation rules.

Common notion of (f, κ) -robust averaging Allouah et al. (2023) :

For any n vectors $v_1, \ldots, v_n \in \mathbb{R}^d$ and any subset $S \subseteq [n]$ of size n - f,

$$\|A(v_1,\ldots,v_n)-\overline{v}_S\|^2 \leq \frac{\kappa}{n-f}\sum_{i\in S}\|v_i-\overline{v}_S\|^2,$$

where
$$\overline{v}_S := \frac{1}{n-f} \sum_{i \in S} v_i$$

→ This definition is satisfied by many existing aggregation rules.

Agg.	CW-TM	GM	CW-Med	L.B.
κ	$\mathcal{O}\left(\frac{f}{n-2f}\right)$	$\mathcal{O}\left(1 + \frac{f}{n-2f}\right)$	$\mathcal{O}\left(1 + \frac{f}{n-2f}\right)$	$\Omega\left(\frac{f}{n-2f}\right)$

Applies to Krum, Multi-Krum Blanchard et al. (2017) and MeaMed Xie et al. (2018).

Common notion of (f, κ) -robust averaging Allouah et al. (2023):

For any n vectors $v_1, \ldots, v_n \in \mathbb{R}^d$ and any subset $S \subseteq [n]$ of size n-f,

$$\|A(v_1,\ldots,v_n)-\overline{v}_S\|^2 \leq \frac{\kappa}{n-f}\sum_{i\in S}\|v_i-\overline{v}_S\|^2,$$

where
$$\overline{v}_S := \frac{1}{n-f} \sum_{i \in S} v_i$$

Convergence result in the homogeneous case (G=0):

Common notion of (f, κ) -robust averaging Allouah et al. (2023):

For any n vectors $v_1, \ldots, v_n \in \mathbb{R}^d$ and any subset $S \subseteq [n]$ of size n-f,

$$\|A(v_1,\ldots,v_n)-\overline{v}_S\|^2 \leq \frac{\kappa}{n-f}\sum_{i\in S}\|v_i-\overline{v}_S\|^2,$$

where $\overline{v}_S := \frac{1}{n-f} \sum_{i \in S} v_i$

Convergence result in the homogeneous case (G = 0):

If A is an (f,κ) -robust averaging, for some $(\gamma_t)_{t\in [T]}$, the algorithm satisfies (f,ε) -Byzantine resilience with

$$\varepsilon \in \mathcal{O}\left(\frac{\mathcal{K}_{\mathcal{L}_H}\sigma^2}{(n-f)T} + \kappa \sigma^2\right)$$

Common notion of (f, κ) -robust averaging Allouah et al. (2023):

For any n vectors $v_1, \ldots, v_n \in \mathbb{R}^d$ and any subset $S \subseteq [n]$ of size n - f,

$$||A(v_1,...,v_n) - \overline{v}_S||^2 \le \frac{\kappa}{n-f} \sum_{i \in S} ||v_i - \overline{v}_S||^2,$$

where $\overline{v}_S := \frac{1}{n-f} \sum_{i \in S} v_i$

Convergence result in the homogeneous case (G = 0):

If A is an (f,κ) -robust averaging, for some $(\gamma_t)_{t\in [T]}$, the algorithm satisfies (f,ε) -Byzantine resilience with

$$\varepsilon \in \mathcal{O}\left(\frac{\mathcal{K}_{\mathcal{L}_H}\sigma^2}{(n-f)T} + \kappa \sigma^2\right)$$

→ This incompressible error might be problematic in practice.

Some Numerical Observations: Model Setting

Learning task: MNIST hand-written digit image classification task with n=15 nodes out of which f=5 might be Byzantine.

Some Numerical Observations: Model Setting

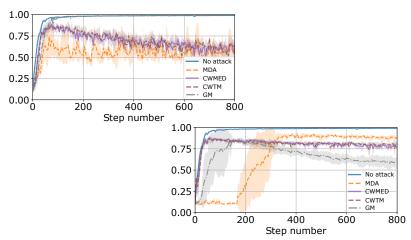
Learning task: MNIST hand-written digit image classification task with n=15 nodes out of which f=5 might be Byzantine.

Adversarial behaviors: The Byzantine nodes apply either of the following:

- ullet Label-flipping: shift the label of each image 0123456789 ullet 1234567890
- \bullet Sign-flipping: send the inverse of the local gradient $g_t^{(i)} \to -g_t^{(i)}$

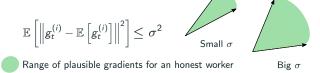
Some Numerical Observations: The Results

Training accuracy of a CNN along the learning procedure on MNIST. On the **left** *label-flipping* attack and on the **right** *sign-flipping* attack.



Why is There Still a Gap?

Recall the challenge we focus on here:

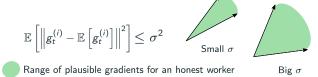


Let's reduce uncertainty!

• Option 1: Reduce the noise by using larger mini-batches?

Why is There Still a Gap?

Recall the challenge we focus on here:

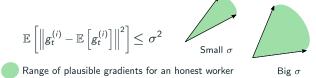


Let's reduce uncertainty!

- Option 1: Reduce the noise by using larger mini-batches? Inflates the computationnal cost of the method quite a lot.
- Option 2: Learn from past gradients using momentum?

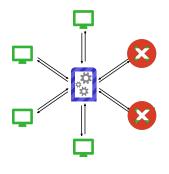
Why is There Still a Gap?

Recall the challenge we focus on here:



Let's reduce uncertainty!

- Option 1: Reduce the noise by using larger mini-batches? Inflates the computationnal cost of the method quite a lot.
- Option 2: Learn from past gradients using momentum? Obviously much better since this is what I will present in the next slide.

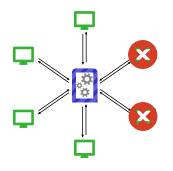


• Honest node *i* computes

$$m_t^{(i)} = \textcolor{red}{\beta_t} m_{t-1}^{(i)} + \textcolor{red}{(1-\beta_t)} g_t^{(i)},$$
 where $m_0^{(i)} = 0$ and $\beta_t \in [0,\,1).$

Server updates & broadcasts

$$\theta_{t+1} = \theta_t - \gamma_t A\left(m_t^{(1)}, \dots, m_t^{(n)}\right)$$



Honest node i computes

$$m_t^{(i)} = \beta_t m_{t-1}^{(i)} + (1 - \beta_t) g_t^{(i)},$$

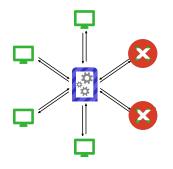
where $m_0^{(i)} = 0$ and $\beta_t \in [0, 1)$.

Server updates & broadcasts

$$\theta_{t+1} = \theta_t - \gamma_t A\left(m_t^{(1)}, \dots, m_t^{(n)}\right)$$

Using the above algorithm (with $\beta_t \equiv \beta$) we have

$$\frac{1}{H}\sum_{i\in H}\mathbb{E}\left[\left\|\boldsymbol{m}_t^{(i)}-\overline{\boldsymbol{m}}_t\right\|^2\right]\in\mathcal{O}\left(\frac{1-\beta}{1+\beta}\sigma^2\right), \text{ with } \overline{\boldsymbol{m}}_t:=\frac{1}{(n-f)}\sum_{i\in H}\boldsymbol{m}_t^{(i)}.$$



Honest node i computes

$$m_t^{(i)} = \beta_t m_{t-1}^{(i)} + (1 - \beta_t) g_t^{(i)},$$

where $m_0^{(i)} = 0$ and $\beta_t \in [0, 1)$.

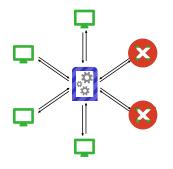
Server updates & broadcasts

$$\theta_{t+1} = \theta_t - \gamma_t A\left(m_t^{(1)}, \dots, m_t^{(n)}\right)$$

Using the above algorithm (with $\beta_t \equiv \beta$) we have

$$\frac{1}{H}\sum_{i\in H}\mathbb{E}\left[\left\|\boldsymbol{m}_t^{(i)}-\overline{\boldsymbol{m}}_t\right\|^2\right]\in\mathcal{O}\left(\frac{1-\beta}{1+\beta}\sigma^2\right), \text{ with } \overline{\boldsymbol{m}}_t:=\frac{1}{(n-f)}\sum_{i\in H}\boldsymbol{m}_t^{(i)}.$$

 $\rightarrow \beta_t$ is driving the "noise reduction" but also creates a bias.



Honest node i computes

$$m_t^{(i)} = \beta_t m_{t-1}^{(i)} + (1 - \beta_t) g_t^{(i)},$$

where $m_0^{(i)} = 0$ and $\beta_t \in [0, 1)$.

• Server updates & broadcasts

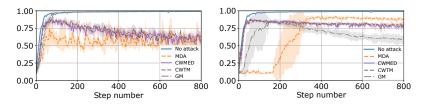
$$\theta_{t+1} = \theta_t - \gamma_t A\left(m_t^{(1)}, \dots, m_t^{(n)}\right)$$

Convergence result in the homogeneous case Farhadkhani et al. (2022, 2023):

Assume A is an (f,κ) -robust averaging. For some $(\gamma_t)_{t\in [T]}$, setting $\beta_t:=1-c\gamma_t, \forall t\in [T]$, the algorithm satisfies (f,ε) -Byzantine resilience with

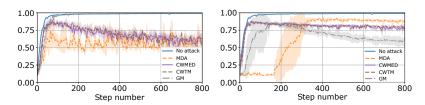
$$\varepsilon \in \mathcal{O}\left(\left(\kappa + \frac{1}{(n-f)}\right) \frac{\mathcal{K}_{\mathcal{L}_H} \sigma^2}{T}\right)$$

Impact of the Momentum on Byzantine Resilience

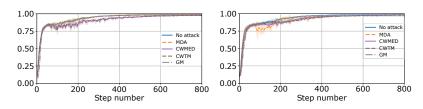


Same setting as before. Up without momentum ($\beta_t \equiv 0)$

Impact of the Momentum on Byzantine Resilience



Same setting as before. **Up** without momentum ($eta_t \equiv 0$) and **down** with momentum ($eta_t \equiv 0.99$)

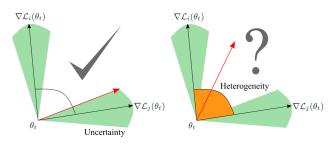


What About Heterogeneity?

What are the Bottlenecks? (repetitio)

- Some robust estimation schemes can be adapted, but beware of assumptions on the distributions
- We have to be careful about of the model drift accumulation

Two main bottlenecks: uncertainty and heterogeneity

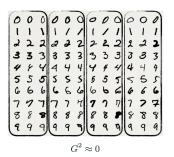


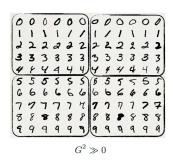
→ This only arises due to the presence of Byzantine nodes

What Do We Mean By Heterogeneity?

(Updated) Heterogeneity Assumption: There exists $G^2 < \infty$ s.t. $\forall \theta \in \mathbb{R}^d$,

$$\frac{1}{n-f} \sum_{i \in H} \|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_H(\theta)\|^2 \le G^2$$





Simulating Heterogeneity

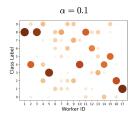
For each class $y \in \mathcal{Y}$, sample the proportion of this class' data-points held by each client using a symmetric Dirichlet distribution $\mathbb{D}_n(\alpha)$, with $\alpha > 0$.

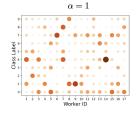
 \rightarrow Sampling in point from the simplex with concentration driven by α . ($\alpha=1$ we get uniform sampling on the simplex)

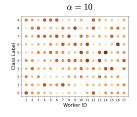
Simulating Heterogeneity

For each class $y \in \mathcal{Y}$, sample the proportion of this class' data-points held by each client using a symmetric Dirichlet distribution $\mathbb{D}_n(\alpha)$, with $\alpha > 0$.

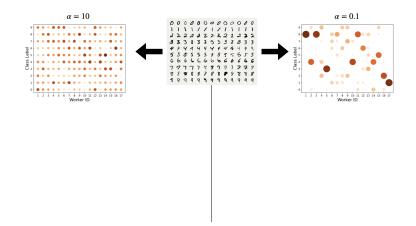
 \rightarrow Sampling in point from the simplex with concentration driven by α . ($\alpha=1$ we get uniform sampling on the simplex)



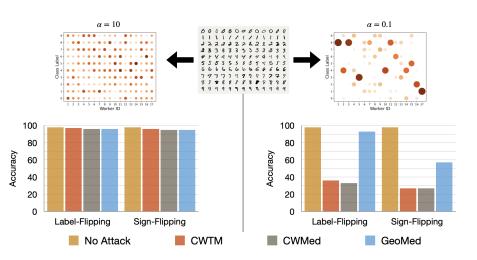




Some Numerical Observations on Heterogeneity



Some Numerical Observations on Heterogeneity



Training CNN on n=17 nodes where f=4 nodes are Byzantine. MNIST dataset split using Dirichlet distribution.

Does This Appear in Theory?

Lower bound see e.g. Karimireddy et al. (2022):

There exists a set of loss functions satisfying our assumptions for which we **cannot** reach an ϵ -solution unless $\epsilon \in \Omega\left(\frac{f}{n}G^2\right)$.

Does This Appear in Theory?

Lower bound see e.g. Karimireddy et al. (2022):

There exists a set of loss functions satisfying our assumptions for which we **cannot** reach an ϵ -solution unless $\epsilon \in \Omega\left(\frac{f}{n}G^2\right)$.

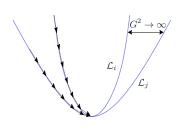
- Similar to uncertainty (indistinguishability)
- This is a very pessimistic bound

Matching upper bound see e.g. Allouah et al. (2023):

Using the previous algorithm with momentum and A a (κ, f) -robust averaging, we have $\epsilon \in \mathcal{O}\left(\kappa G^2\right)$.

Heterogeneity is an Open Problem

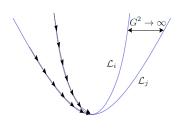
Is this not too pessimistic?



- ullet Uniform bound on the entire space \mathbb{R}^d
- Some parts of the space are more interesting than others.
- Even criticized in federated learning standard settings Wang et al. (2022)

Heterogeneity is an Open Problem

Is this not too pessimistic?



- ullet Uniform bound on the entire space \mathbb{R}^d
- Some parts of the space are more interesting than others.
- Even criticized in federated learning standard settings Wang et al. (2022)

We need more realistic (tighter) measurements of heterogeneity in distributed learning (only on the optima, or modular bounds).

Other Open Problems I Did Not Talk About

- Existing research is mostly focused on first-order methods
 - → Little has been done on higher order/gradient free methods
- Similarly, research is mostly focused on federated settings
 - → Little (a bit more though) has been done on decentralized methods
- Here we mainly focus on the robustness of the algorithm at training time
 - → What about generalization? How to be robust to test-time triggered attacks such as "Backdoor attacks", see e.g. Nguyen et al. (2023)
- We did not mention other concerns (privacy, fairness, bias, etc.)
 - → Seem conflicting, but ultimately, we need to combine them.

Thanks for listening!

References

- Allouah, Y., Farhadkhani, S., Guerraoui, R., Gupta, N., Pinot, R., and Stephan, J. (2023). Fixing by mixing: A recipe for optimal Byzantine ML under heterogeneity. In *International Conference on Artificial Intelligence and Statistics*, pages 1232–1300. PMLR.
- Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and Stainer, J. (2017). Machine learning with adversaries: Byzantine tolerant gradient descent. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, *Advances in Neural Information Processing Systems 30*, pages 119–129. Curran Associates, Inc.
- Chen, Y., Su, L., and Xu, J. (2017). Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. *Proceedings of the ACM on Measurement and Analysis of Computing Systems*, 1(2):1–25.
- Farhadkhani, S., Guerraoui, R., Gupta, N., Hoang, L.-N., Pinot, R., and Stephan, J. (2023). Robust collaborative learning with linear gradient overhead.
- Farhadkhani, S., Guerraoui, R., Gupta, N., Pinot, R., and Stephan, J. (2022).

 Byzantine machine learning made easy by resilient averaging of momentums. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and Sabato, S., editors, *International Conference on Machine Learning*,

- ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 6246–6283. PMLR.
- Karimireddy, S. P., He, L., and Jaggi, M. (2022). Byzantine-robust learning on heterogeneous datasets via bucketing. In *International Conference on Learning Representations*.
- Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich, S. (2020). A unified theory of decentralized SGD with changing topology and local updates. In III, H. D. and Singh, A., editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 5381–5393. PMLR.
- Lamport, L., Shostak, R., and Pease, M. (1982). The byzantine generals problem. *ACM Trans. Program. Lang. Syst.*, 4(3):382–401.
- Nguyen, T. D., Nguyen, T., Nguyen, P. L., Pham, H. H., Doan, K., and Wong, K.-S. (2023). Backdoor attacks and defenses in federated learning: Survey, challenges and future research directions.
- Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. *Mathematical statistics and applications*, 8(37):283–297.
- Wang, J., Das, R., Joshi, G., Kale, S., Xu, Z., and Zhang, T. (2022). On the

unreasonable effectiveness of federated averaging with heterogeneous data.

Xie, C., Koyejo, O., and Gupta, I. (2018). Generalized byzantine-tolerant sgd.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. (2018). Byzantine-robust distributed learning: Towards optimal statistical rates. In *International Conference on Machine Learning*, pages 5650–5659. PMLR.