Byzantine-Robustness in Federated Learning

Learning with adversarial data

Rafael Pinot, Sorbonne Université
Nirupam Gupta, University of Copenhagen



What is Federated Learning (FL)?



Supervised Learning (Example of Image Classification)

X set of images Y={1,1}

e Assumption: A ground-truth distribution D linking X and Y
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Supervised Learning (Example of Image Classification)

X set of images Y={1,1}

il m o

e Assumption: A ground-truth distribution D linking X and Y

e Goal: Use D to design h : X — R matching images X to labels Y
1) Define a loss function £: R x Y — R™ and a hypothesis class H
2) Find h € H to minimize the expected error E(, ) p [¢ (k(z),y)]
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Supervised Training in the Ce
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e Given a set of m training examples:
S = {(x17y1)> “eey (x'myy'm)} ~ Dm

e Parameterized H := {hy | 6 € R}

e Minimize the empirical risk (ERM):

£0) = %Z”h" (@), vs)
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Supervised Training in the Centralized Setting

e Given a set of m training examples:
S = {(x17y1)> “eey (xmyy'm)} ~ Dm

e Parameterized H := {hy | 6 € R}

e Minimize the empirical risk (ERM):

£0) = %Z”h" (@), vs)

Learning objective: Assuming £ admits a minimum on R¢, we seek an
e-approximate solution to the ERM, i.e,, fst

L (é) —L* <&, where £* = min L (6).
HeRrd
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Stochastic Gradient Descent (SGD) in the Centralized Setting

e Simple and efficient method
e Well understood theoretically

e Massively used in practice
(especially for deep learning tasks)

e Start with an arbitrary parameter 6,

e Ateverystept=1,---,T do:
e Sample a data point (z,y) ~ Unif(S)
e Compute a stochastic gradient g; := Vg, € (he, (z),y)
e Update the parameter 0s41 = 0 — v g+
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Federated/Distributed Machine Learning

1. Datacenter distributed learning

— Train a model on a single massive dataset
— Distribution limits computations/storage
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Federated/Distributed Machine Learning

1. Datacenter distributed learning

— Train a model on a single massive dataset
— Distribution limits computations/storage

_ 2. Cross-silo distributed/federated learning

— Datacenters are geo-distributed
— Keeping data locally is safer
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Federated/Distributed Machine Learning

1. Datacenter distributed learning

— Train a model on a single massive dataset
— Distribution limits computations/storage

_ 2. Cross-silo distributed/federated learning

— Datacenters are geo-distributed
— Keeping data locally is safer

3. Cross-device distributed/federated learning

— Same distribution/security requirement s
—» Less computational power per device (
» More diversity in the data (heterogeneity) C
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Federated Machine Learning: Problem Statement

e Server-based communications with n
nodes and a (trusted) central server

\/

-
-

Li(0) == A > t(ho(x),y)

T o

K / e Nodes hold the data locally (Si)icn
T o

J

e The server coordinates the training
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Federated Machine Learning: Problem Statement

m e Server-based communications with n
D ‘ nodes and a (trusted) central server
\ ,Q / e Nodes hold the data locally (S:);en
Q
1
“Teyes;
D e The server coordinates the training

Training objective: Finding an e-approximate solution to the ERM for the
loss function defined as £(6) := = 37 | £;(0)

n
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Some Additional Information on the Problem Statement (1/2)

The problem is L-smooth and u-PL
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Some Additional Information on the Problem Statement (1/2)

The problem is L-smooth and u-PL
e JL < co st forall g, 0 ¢ R? and any (z,y) € X x Y, we have

IVE(ho(z),y) — VE(he (x), y)|| < L0 — 0]
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Some Additional Information on the Problem Statement (1/2)

The problem is L-smooth and u-PL
e JL < co st forall g, 0 ¢ R? and any (z,y) € X x Y, we have

IVe(ho(x),y) — Ve(ho (), y)]| < L|6 —6']].

e Ju < oo st forall @ € RY, we have

IVL®)|]? > 2u (L£(0) — L£*) (Polyak's inequality)
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Some Additional Information on the Problem Statement (1/2)

The problem is L-smooth and u-PL
e JL < co st forall g, 0 ¢ R? and any (z,y) € X x Y, we have

IVe(ho(x),y) — Ve(ho (), y)]| < L|6 —6']].

e Ju < oo st forall @ € RY, we have
IVL®)|]? > 2u (L£(0) — L£*) (Polyak's inequality)

— Numerical examples neural-network for image classification
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Some Additional Information on the Problem Statement (2/2)

e All local datasets have the same size m (everything can be adapted)
— We make this assumption, just for simplicity

LPSM'’s Statistics Seminar 2024 — A Small Tutorial on Byzantine-Robustness 7



Some Additional Information on the Problem Statement (2/2)

e All local datasets have the same size m (everything can be adapted)
— We make this assumption, just for simplicity

e Stochastic gradients have bounded stochasticity

There exists o < oo st. forall i € [n] and 6 € R?,

Y IV (he(e),y) - VLGOI < o

(z,y)€S;
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Some Additional Information on the Problem Statement (2/2)

e All local datasets have the same size m (everything can be adapted)
— We make this assumption, just for simplicity

e Stochastic gradients have bounded stochasticity

There exists o < oo st. forall i € [n] and 6 € R?,

1

> IVE(he(z),y) — VL(O)]* < 0
(z,9)E€S;

e Bounded gradient heterogeneity between the nodes

There exists G < oo sit. for all § € R?,

ST IVLA) - VL) < 6
1€[n]
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Distributed Stochastic Gradient Descent (DSGD)

I.:l Ateverystept=1,...,T
e node i computes & sends
9" = Vo, £(ho, (:),vs),
where (x;,y:) ~ Unif(S;).
L:] e Server updates & broadcasts

g 0
\/
/N

n

D 0t+1:0t_7t%z,(/;“

1=1
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Distributed Stochastic Gradient Descent (DSGD)

I.:l Ateverystept=1,...,T
e node i computes & sends
9" = Vo, £(ho, (:),vs),
where (x;,y:) ~ Unif(S;).
L:] e Server updates & broadcasts

n

D 0t+1:0t_7t%z,(/;“

1=1

\/
/N

-
-

Standard convergence see e.g. Koloskova et al. (2020) :

For some (vt) e[y, 0 gives an e-approximate solution (in expectation), with

2
ee(’)(ICLU ),andlCE::E.
T M

n
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Distributed Learning is So Great!

e So distributed learning is easy to implement, efficient and trendy ...

e This means that we can use it for many great applications
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Distributed Learning is So Great!

e So distributed learning is easy to implement, efficient and trendy ...

e This means that we can use it for many great applications

Personal Devices

E.g o 4’:
. /\\\
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Distributed Learning is So Great!

e So distributed learning is easy to implement, efficient and trendy ...

e This means that we can use it for many great applications

Decision-making Tools Personal Devices

o v'ée_' %?

g
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Distributed Learning is So Great!

e So distributed learning is easy to implement, efficient and trendy ...

e This means that we can use it for many great applications

Al-driven Technologies Decision-making Tools Personal Devices

0 v_ﬁe_' qﬁf;:

g
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Things Can Go Wrong 1/2

WITH GREAT

POWER

COMES GREAT
RESPONSIBILITY
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Things Can Go Wrong 2/2

Things can go wrong in many ways ...
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Things Can Go Wrong 2/2

Things can go wrong in many ways ...

e Since the 80's: privacy preserving
database analysis is a primary concern

Data Protection
Data Storage

Privacy

More recently: fairness/robustness to
adversarial examples

Trustworthy
Machine Learning

Robustness

Accountability

Some are more specific to Federated

Reliability Learning (Byzantine failures)
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Robustness to Byzantine Nodes



In Practice, Misbehaving Nodes Are Inevitable

e Software bugs and Hardware crashes can occur
» Add errors/arbitrary values in the computations
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In Practice, Misbehaving Nodes Are Inevitable

e Software bugs and Hardware crashes can occur
» Add errors/arbitrary values in the computations

e Some nodes may have poisoned or irrelevant data or can get hacked

Bots can send
[EEE—— S pecific inputs to
Amazing LLM bias the training

Or
Political Poll

Bots can collude
to control the training
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In Practice, Misbehaving Nodes Are Inevitable

e Software bugs and Hardware crashes can occur
» Add errors/arbitrary values in the computations

e Some nodes may have poisoned or irrelevant data or can get hacked

Bots can send
3 [EEE—— S pecific inputs to
Amazing LLM bias the training

Or
Political Poll

Bots can collude
to control the training

Challenge: We do not know which nodes may misbehave (nor how)
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The Byzantine Threat Model

D e We take the Byzantine threat model
D ‘ inherited from Lamport et al. (1982)
\ e Upto / < n/2 nodes may be bad
m / ‘ e When i is Byzantine we have
D 4(/,“‘ =, YVt € [T] (Synchrony)
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The Byzantine Threat Model

D e We take the Byzantine threat model
‘ inherited from Lamport et al. (1982)

e Upto / < n/2 nodes may be bad

‘ ¥ e When i is Byzantine we have

=, YVt € [T] (Synchrony)

\/

-
-

New objective: Denote H the set of honest (non-Byzantine) nodes. We seek
an e-approximate solution to the ERM for the loss function defined as

)
m

= ZE (aka. (f,e)-Byzantine resilience)
n- f i€H
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The Byzantine Threat Model

D e We take the Byzantine threat model
‘ inherited from Lamport et al. (1982)

e Upto / < n/2 nodes may be bad

‘ ¥ e When i is Byzantine we have

=, YVt € [T] (Synchrony)

\/

-
-

New objective: Denote H the set of honest (non-Byzantine) nodes. We seek
an e-approximate solution to the ERM for the loss function defined as

)
m

= ZE (aka. (f,e)-Byzantine resilience)
n- f i€H

—> Despite the f Byzantine nodes (and not knowing H a priori)
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Is DSGD Byzantine Robust?

Honest o Recall update rule at the server:

Byzantine e 0t+1 =6 — Yt Z .(//H
n =

\\\ Honest Average
° m s Hence is arbitrarily manipulable by
Honest\*

a single Byzantine node.
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Is DSGD Byzantine Robust?

Honest o Recall update rule at the server:

. n

.

l (2)
Byzantine e > 0t+1 =6 — ’Yt; Z 9t

\\\ Honest Average
° m s Hence is arbitrarily manipulable by
Honest\*

a single Byzantine node.

A standard approach to confer Byzantine robustness:

Replace the averaging with a non-linear aggregation rule A : R¥*" — R%:

0t+1 = Qt —’ytA\ <({/,§M ..... ,I/‘/'“>

— Choosing A is close to the robust mean estimation problem
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What are the Bottlenecks ?

e Some robust estimation schemes can be adapted, but beware of
assumptions on the distributions

e We have to be careful about of the model drift accumulation

Two main bottlenecks: uncertainty and heterogeneity

VLi(6)) VLi(0:)

Heterogeneity
VL;(6:) VL;(6:)

01 . 0
Uncertainty
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What are the Bottlenecks ?

e Some robust estimation schemes can be adapted, but beware of
assumptions on the distributions

e We have to be careful about of the model drift accumulation

Two main bottlenecks: uncertainty and heterogeneity

VLi(6)) VLi(0:)

Heterogeneity
VL;(6:) VL;(6:)

01 . 0
Uncertainty

> This only arises due to the presence of Byzantine nodes
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What are the Bottlenecks ?

e Some robust estimation schemes can be adapted, but beware of
assumptions on the distributions

e \We have to be careful about of the model drift accumulation

Two main bottlenecks: uncertainty and heterogeneity

VLi(0:)

, Heterogeneity

VL;(0:) | - >

6, 5
Uncertainty

— This only arises due to the presence of Byzantine nodes
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What Can We Do About Uncertainty ?




Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n =5, f =1, d = 2):

Coordinate-wise median (CW-Med)
— Compute the median per coordinate.

31368|_(3
62431/ |3

CW-Med (
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Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n =5, f =1, d = 2):

Coordinate-wise median (CW-Med)
— Compute the median per coordinate.

31368|_(3
62431/ |3

CW-Med (

Coordinate-wise trimmed mean (CW-TM)
> Remove f biggest and f smallest coordinates
on each dimension, and then average.

3136K:%4
3

W-TM
¢ £243%
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Some Famous Aggregation Rules 1/2

Simple coordinate-wise solutions (n =5, f =1, d = 2):

Coordinate-wise median (CW-Med)
— Compute the median per coordinate.

31368|_(3
62431/ |3

CW-Med (

Coordinate-wise trimmed mean (CW-TM)
> Remove f biggest and f smallest coordinates
on each dimension, and then average.

3136K:%4
3

CW-TM
B243A4
Both these solutions have been analyzed, e.g,, in Yin et al. (2018).
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Some Famous Aggregation Rules 2/2

More sophisticated aggregations:

Geometric median Chen et al. (2017)
— Output a vector that realizes the geometric me-
dian of the send gradients, i.e,,

n
GM (v1,...,vn) € ATEMIN, cpa Z v —vi|.
i=1
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Some Famous Aggregation Rules 2/2

More sophisticated aggregations:

Geometric median Chen et al. (2017)
— Output a vector that realizes the geometric me-
dian of the send gradients, i.e,,

n
GM (v1,...,vn) € ATEMIN, cpa Z v —vi|.

i=1

MDA Rousseeuw (1985)
— Choose a set S* of n— f indices with the small-
est diameter. Then average over S*, i.e,

MDA (v1, ..., vn) = L Zvi.
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Some Famous Aggregation Rules 2/2

More sophisticated aggregations:

Geometric median Chen et al. (2017)
— Output a vector that realizes the geometric me-
dian of the send gradients, i.e,,

n
GM (v1,...,vn) € ATEMIN, cpa Z v —vi|.

i=1

MDA Rousseeuw (1985)
— Choose a set S* of n— f indices with the small-
est diameter. Then average over S*, i.e,

MDA (v1, ..., vn) = L Zvi.

But also MeaMed Xie et al. (2018), Krum, Multi-Krum Blanchard et al. (2017) ...
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A First Step Towards Resilience

Common notion of (f, x)-robust averaging Allouah et al. (2023) :

For any n vectors v1, ..., v, € R* and any subset S C [n] of size n — f,

_ K _
A (v1,..., v) —3s|*> < p—- ZHM*USHQ,
ics

where Ts := 25 37, o vi
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A First Step Towards Resilience

Common notion of (f, x)-robust averaging Allouah et al. (2023) :

For any n vectors v1, ..., v, € R* and any subset S C [n] of size n — f,

K _
14 (v, ..., wn) = Ts||* < —7 > lloi = s,
" i€S

where Ts := 25 37, o vi

Quick sanity check: If o* = 0 and & = 0 the honest workers are identical
(full gradients on identical data)

S llos sl =0

i€S

— The aggregation rule should mimic the majority voting scheme.
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A First Step Towards Resilience

Common notion of (f, x)-robust averaging Allouah et al. (2023) :

For any n vectors vi, ..., v, € R* and any subset S C [n] of size n. — f,
_ K _
|4 (v1,..., va) —Ts|* < — Z llvi — o5 |,
ies

where s i= 15 30, g s

—» This definition is satisfied by many existing aggregation rules.
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A First Step Towards Resilience

Common notion of (f, x)-robust averaging Allouah et al. (2023) :

For any n vectors vi, ..., v, € R* and any subset S C [n] of size n. — f,

_ R _
|4 (v1,..., va) —Ts|* < — ZHM — s,
i€s

where s i= 15 30, g s

—» This definition is satisfied by many existing aggregation rules.

CW-TM ‘ GM ‘ CW-Med ‘ L.B.

v o) [o (i) o (14 k) [ (k)

Applies to Krum, Multi-Krum Blanchard et al. (2017) and MeaMed Xie et al. (2018).
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A First Step Towards Resilience

Common notion of (f, x)-robust averaging Allouah et al. (2023):

For any n vectors vi, ..., v, € R* and any subset S C [n] of size n — f,

K
Viy..., Un) — Vs < v; —Us||,
1 A( ) I> < | I”
n—f ¢
i€S

where Ts := 25 32, 5 vi

Convergence result in the homogeneous case (G = 0):
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A First Step Towards Resilience

Common notion of (f, x)-robust averaging Allouah et al. (2023):

For any n vectors vi, ..., v, € R* and any subset S C [n] of size n — f,

K
Viy..., Un) — Vs < v; —Us||,
1 A( ) I> < | I”
n—f ¢
i€S

where Ts := 25 32, 5 vi

Convergence result in the homogeneous case (G = 0):

If Alis an (f, x)-robust averaging, for some (7;).ejr), the algorithm satisfies
(f,&)-Byzantine resilience with

IC[:HO'Q 2
eeO <(/] — AT + ko
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A First Step Towards Resilience

Common notion of (f, x)-robust averaging Allouah et al. (2023):

For any n vectors vi, ..., v, € R* and any subset S C [n] of size n — f,

K _
HA(Ulv'”vvn)*@SHQ < E Hv’iivSHZv
n—f ¢
i€S

where Ts := 25 32, 5 vi

Convergence result in the homogeneous case (G = 0):

If Alis an (f, x)-robust averaging, for some (7;).ejr), the algorithm satisfies
(f,&)-Byzantine resilience with

IC[:HO'Q 2
ee€O <(/1 — T + Ko

— This incompressible error might be problematic in practice.
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Some Numerical Observations: Model Setting

Learning task: MNIST hand-written digit image classification task with
n = 15 nodes out of which f = 5 might be Byzantine.

060000600 pPp0O02 0
iy T R
Va2 022322003432
B st 3225333533
srY 4494 fydd g
S 085S Es g5 <alrs
LebilLbobcdicel
W21 a1 237
A R
99999%94949449
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Some Numerical Observations: Model Setting

Learning task: MNIST hand-written digit image classification task with
n = 15 nodes out of which f = 5 might be Byzantine.

600006002 P0O0L0
e Y T e
3325021233
2z 333 5>5383 3
grda94g fydd gy
E5S8 S5 Ss 5 r<Es
LEebtcbbbecbces
G720 1991900 237
3I®LIPEEPTTY S
99999%94994944

Adversarial behaviors: The Byzantine nodes apply either of the following:

e Label-flipping: shift the label of each image 0123456789 — 1234567890

e Sign-flipping: send the inverse of the local gradient g{! — —g{®
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Some Numerical Observations: The Results

Training accuracy of a CNN along the learning procedure on MNIST. On the
left label-flipping attack and on the right sign-flipping attack.

1.00
0.75
0.50 | No attac‘k
F MDA
0.25 — CWMED
- = CWTM
— . GM
0.00, 200 400 600 800

Step number

1.007
0.75
0.50 / ~— No attack
/ MDA

0.251 —— CWMED

% — = CWTM

—- GM

0.00

0 200 400 600 800

Step number
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Why is There Still a Gap?

Recall the challenge we focus on here:

dl

Range of plausible gradients for an honest worker Big o

-z [0 <

Small o

Let's reduce uncertainty!

e Option 1: Reduce the noise by using larger mini-batches?
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Why is There Still a Gap?

Recall the challenge we focus on here:

[ - 5[ef][] <

Range of plausible gradients for an honest worker Big o

Small o

Let's reduce uncertainty!

e Option 1: Reduce the noise by using larger mini-batches? Inflates the
computationnal cost of the method quite a lot.

e Option 2: Learn from past gradients using momentum?
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Why is There Still a Gap?

Recall the challenge we focus on here:

dl

Range of plausible gradients for an honest worker Big o

-z [0 <

Small o

Let's reduce uncertainty!

e Option 1: Reduce the noise by using larger mini-batches? Inflates the
computationnal cost of the method quite a lot.

e Option 2: Learn from past gradients using momentum? Obviously much
better since this is what | will present in the next slide.
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Controlling Gradient Variance with Momentum

4

T

-

e Honest node 7 computes
mi) = Bim?, + (1 Bi)g?,

where m{’ = 0and g; € [0, 1).
e Server updates & broadcasts

0141 :9,5—%‘1(17);“ ..... m}/”:>
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Controlling Gradient Variance with Momentum

e Honest node i computes
mii) = fmm + (1

where m =0and B €

\:a

3t)
€ [0,

a7,

D).

e Server updates & broadcasts

Or41 =0 — A (mi ..... m}/”:>
Using the above algorithm (with 8; = 3) we have
L O 1-8 5\ .. 1
H;{E{Hmt e }60(1+ﬂa),W|thmt.—(n_f)i€ZHm
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Controlling Gradient Variance with Momentum

e Honest node i computes
m{? = Bem(2, + (1 - Bo)gs”,
vvherem =0and B € [0, 1).

¥ e Server updates & broadcasts
0141 :9,5—%‘1(17);“ m}/”:>

Using the above algorithm (with 8; = 3) we have
H;{E{Hmt e }EO(1+50),WIthmt.—(n_f)ieZHmt.

» B¢ is driving the “noise reduction” but also creates a bias.
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Controlling Gradient Variance with Momentum

] e Honest node i computes

D ‘ % mii) = J,m,@l +(1 7!)97&“7
> where m{’ = 0and g € [0, 1).

]

M e Server updates & broadcasts
‘ Ori1 =0 — 1 A <m;“ nz‘,"”})

Convergence result in the homogeneous case Farhadkhani et al. (2022, 2023):

Assume A'is an (f, k)-robust averaging. For some (vt ):e[r), setting
Be :=1— ey, Vt € [T], the algorithm satisfies (f, e)-Byzantine resilience with

N 1 /CLH02
560(@' mff» T )
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Impact of the Momentum on Byzantine Resilience

1.007 1.007
0.75 0.75
/ s
0.50+/ —— No attack 0.50 T —— No attack
M MDA /] MDA
0.25 —— CWMED 0.25{ ——— CWMED
— = CWTM ¥ — = CWTM
=+ GM - GM
. 0.00
0 000 200 400 600 800 0 200 400 600 800
Step number Step number

Same setting as before. Up without momentum (8; = 0)
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Impact of the Momentum on Byzantine Resilience

1.007 1.007
0.75 0.75
/ s
0.501/ —— No attack 0.50 T —— No attack
i MDA I MDA
0.25 —— CWMED 0.25{ ——— CWMED
— = CWTM ¥ — = CWTM
=+ GM - GM
. 0.00
0 000 200 400 600 800 0 200 400 600 800
Step number Step number

Same setting as before. Up without momentum (8; = 0) and down with momentum (3; = 0.99)

1.00 1.007 —
= No attack
0.75 —— No attack 0.75 MDA
MDA 3 = CWMED

0.50 ~—— CWMED 0.50 ——CWTM

i — = CWTM —: GM
0.251 = 0.25
0'000 200 400 600 800 0'000 200 400 600 800

Step number Step number
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What About Heterogeneity?




What are the Bottlenecks? (repetitio)

e Some robust estimation schemes can be adapted, but beware of
assumptions on the distributions

e \We have to be careful about of the model drift accumulation

Two main bottlenecks: uncertainty and heterogeneity

?

Heterogeneity

VL;i(0:) VL;i(0:)

VL;(0:) VL;(0:)

0; . 0:
Uncertainty

— This only arises due to the presence of Byzantine nodes
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Simulating Heterogeneity

For each class y € ), sample the proportion of this class’ data-points held
by each client using a symmetric Dirichlet distribution D,, («), with « > 0.

— Sampling in point from the simplex with concentration driven by a.
(av = 1 we get uniform sampling on the simplex)
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Simulating Heterogeneity

For each class y € ), sample the proportion of this class’ data-points held
by each client using a symmetric Dirichlet distribution D,, («), with « > 0.

— Sampling in point from the simplex with concentration driven by a.
(av = 1 we get uniform sampling on the simplex)

a=01 a=1 a=10
B B s{e eee °
@ @ ) o ® i e ece . X}
; 7 ° 7 eecece o
T6 [ ) T6 T6 ecece .
K 2 K
" [ ) " S5 LN X L] oo
B [ ] B4 24 ececcece .
K [ ] [ ) ERLAR (] [ J K
Cs [ ] Gs Ci{ee ececee
2 [ ] e e . .
1 (] 1 (Y ) 1 ° ° .
o 3 ® ece e .
173233567 830N BELLG6D 7234567 85D N LG0T T:3 567 ssbnnbnbhy
Worker ID Worker ID Worker ID
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Some Numerical Observations on Heterogeneity
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° 1080220200000 ’
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Some Numerical Observations on Heterogeneity
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Label-Flipping Sign-Flipping Label-Flipping Sign-Flipping
No Attack B cwt™ B CWMed GeoMed

Training CNN on n = 17 nodes where f = 4 nodes are Byzantine. MNIST
dataset split using Dirichlet distribution.
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Does This Appear in Theory?

Lower bound see e.g. Karimireddy et al. (2022):

There exists a set of loss functions satisfying our assumptions for
which we cannot reach an e-solution unless e € @ (£G?).
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Does This Appear in Theory?

Lower bound see e.g. Karimireddy et al. (2022):

There exists a set of loss functions satisfying our assumptions for
which we cannot reach an e-solution unless e € @ (£G?).

e Similar to uncertainty (indistinguishability)

e This is a very pessimistic bound

Matching upper bound see e.g. Allouah et al. (2023):

Using the previous algorithm with momentum and A a (., f)-robust
averaging, we have € € O (kG?).
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Heterogeneity is an Open Problem

Is this not too pessimistic ?

e Uniform bound on the entire space R?

e Some parts of the space are more
interesting than others.

e Even criticized in federated learning
standard settings Wang et al. (2022)
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Heterogeneity is an Open Problem

Is this not too pessimistic ?

e Uniform bound on the entire space R?

e Some parts of the space are more
interesting than others.

e Even criticized in federated learning
standard settings Wang et al. (2022)

We need more realistic (tighter) measurements of heterogeneity in
distributed learning (only on the optima, or modular bounds).
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Other Open Problems I Did Not Talk About

e Existing research is mostly focused on first-order methods
— Little has been done on higher order/gradient free methods

e Similarly, research is mostly focused on federated settings
— Little (a bit more though) has been done on decentralized methods

e Here we mainly focus on the robustness of the algorithm at training time
— What about generalization? How to be robust to test-time triggered
attacks such as "Backdoor attacks”, see e.g. Nguyen et al. (2023)

We did not mention other concerns (privacy, fairness, bias, etc.)
> Seem conflicting, but ultimately, we need to combine them.
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Thanks for listening!
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