
Advanced Algorithms October 1, 2024

Lecture 7: Approximation Algorithms
Notes by Ola Svensson1

We first finish the formal analysis of the Hungarian algorithm, and then talk about settings in which
relaxing integrality has a cost, i.e. about approximation algorithms.

1 The Hungarian Algorithm

We start with some intuition before we give the formal description of the algorithm.

1.1 Intuition

Consider the following instance of the min-cost perfect matching problem:

1

2

3

4

5

6

The thin edges have cost 1, whereas the thick edge has cost 2. The Hungarian algorithm will use
Lemma ?? in the following way: we will maintain a dual solution u, v that is feasible at all times. Then,
for a fixed dual solution, the lemma tells us that our perfect matching is only allowed to contain edges
that are tight, i.e., edges e = (a, b) for which ua + vb = c(e). This reduces our problem to finding
any perfect matching in the subgraph consisting only of tight edges, i.e., in the graph (V,E′) where
E′ = {e = (a, b) ∈ E : ua + vb = c(e)}. Intuitively, we have thus reduced our weighted problem to an
unweighted one!

Let us return to our example. We initialize our procedure with the trivial dual solution

vb = 0, ua = min
b∈B

cab.

(We could have also started from u = v = 0.) So in the example, v4 = v5 = v6 = 0 and u1 = u2 = u3 = 1.
The set E′ of tight edges is thus:

1

2

3

4

5

6

We then try to find a perfect matching in this graph using e.g. the augmenting path algorithm we saw
in Lecture 3. However, the considered graph has no perfect matching! This is because we started with
a poor lower bound (dual solution). So we will use the fact that there is no perfect matching to improve
our dual solution. We make use of Hall’s condition, which you will prove in the exercise session:

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.

1

Theorem 1 (Hall’s Theorem) An n-by-n bipartite graph G = (A ∪ B,E′) has a perfect matching if
and only if |S| ≤ |N(S)| for all S ⊆ A.

Here N(S) = {b ∈ B : there is an a ∈ S such that (a, b) ∈ E′} denotes the neighborhood of the ver-
tices in S.

In the above example, we have S = {1, 2} and N(S) = {4}, which violates Hall’s condition (and thus
there is no perfect matching). We now use the set S to improve our dual lower bound.

We gradually increase ua for every a ∈ S and at the same time decrease vb for b ∈ N(S) at the
same rate. Let us see what happens to all edges in E′. Notice that the tight edges between S and N(S)
will remain tight. Similarly, the tight edges between A \ S and B \ N(S) will remain tight. Any tight
edges between A \ S and N(S) will stop being tight. Finally, by definition, there are no edges from S
to B \N(S) initially. We continue to gradually change the dual solution until some such edge becomes
tight.

In the above example, this will result in updating u1 = u2 = 2 and v4 = −1. We have thus increased
two variables by one unit and decreased one variable by one unit. In total, the dual lower bound was
thus increased by one. The set E′ of tight edges with respect to the new dual solution is now

1

2

3

4

5

6

Our (augmenting-path) algorithm will now find a perfect matching in this graph, which is optimal by
Lemma ?? (since it only uses tight edges). In summary, our algorithm always maintains a dual feasible
solution. We then solve the unweighted perfect matching problem on the edges allowed by Lemma ??.
In the case of failure, we update the dual lower bound to a strictly better lower bound and repeat.

1.2 Formal description

Idea: Maintain a feasible dual solution (u, v). Try to construct a feasible primal solution that satisfies
complementarity slackness (Lemma ??) and is thus optimal.

Algorithm:

• Initialization:
vb = 0, ua = min

b∈B
cab.

• Iterative step:

– consider G′ = (A ∪ B,E′) where E′ = {e = (a, b) ∈ E : ua + vb = c(e)} (E′ is the set of all
tight edges);

– find a maximum-cardinality matching in G′:

∗ if it is a perfect matching, then we are done (this is a primal feasible solution and it
satisfies complementarity slackness, because we consider only the edges in E′ and all of
them satisfy slackness by construction),

∗ otherwise the algorithm finds a set S ⊆ A s.t. |S| > |N(S)| (which is guaranteed to exist
by Hall’s theorem)

2

– we can choose a small ε > 0 and improve the dual solution:

u′a =

{
ua + ε if a ∈ S,
ua if a 6∈ S,

v′b =

{
vb − ε if b ∈ N(S),

vb if b 6∈ N(S),

which remains dual feasible because:
∗ edges in S ×N(S) are unchanged (+ε− ε),
∗ edges in (A \ S)× (B \N(S)) are unchanged,
∗ edges in (A \ S)×N(S) are decreased by ε,
∗ edges in S× (B \N(S)) are increased by ε but they were not tight (they were not in E′),

– the dual value increases by (|S| − |N(S)|)ε;
– to make as much progress as possible (and to get a new tight edge), we should choose ε as

large as possible for which the dual remains feasible, that is

ε = min
e=(a,b)∈S×(B\N(S))

c(e)− ua − vb > 0.

The above algorithm can be implemented to run in time O(n3). (This is quite non-trivial to see. It
is somewhat easier to implement in O(n4).)

1.3 An alternative proof that the bipartite perfect matching polytope is
integral

We have shown that for any cost function c we can obtain a minimum-cost perfect matching and it will
be integral. By carefully choosing the cost function, one can make any extreme point of the polytope
to be the unique optimum solution to the minimum-cost perfect matching problem. This shows that all
extreme points are integral, i.e., it is an integral polytope. See Figure 1 for an example.

c

Figure 1: Example of a perfect matching polytope and a cost function vector c for the highlighted
vertex.

2 When Relaxing Integrality is Not for Free: Approximation
Algorithms

Thousands (or millions :)) of optimization problems have been proved to be NP-hard, which means that
finding optimal solutions for them is very likely to be intractable. More specifically, unless P = NP, there
is no algorithm for an NP-hard optimization problem that satisfies all of the following three desiderata:

3

1. The algorithm is efficient (runs in polynomial time).

2. The algorithm is reliable (works for any input instance).

3. The algorithm finds an optimal solution (optimality).

Therefore, when confronted which such problems, we need to relax one of the above conditions when
dealing with NP-hard optimization problems. If we relax reliability, then we get heuristics that are
designed to work well on instances that commonly appear in practice. If we relax the third condition, we
obtain approximation algorithms. The notion of approximation algorithms allows us to obtain a more
fine-grained picture of the difficulty of NP-hard optimization problems: some problems turn out to have
very good approximations, whereas others resist such attempts.

The formal definition of approximation algorithms is as follows.

Definition 2 An α-approximation algorithm for a given optimization problem is an algorithm that runs
in polynomial time and outputs a solution S such that:

• cost(S)
cost(Optimal solution) ≤ α if the problem is a minimization problem,

• profit(S)
profit(Optimal solution) ≥ α if the problem is a maximization problem.

It is clear that we will have α ≥ 1 for minimization problems and α ≤ 1 for maximization problems.
Moreover, if α = 1, then we have an efficient exact algorithm (and the problem is in P). The goal when
designing approximation algorithms is to achieve a guarantee α that is as close to 1 as possible. We now
introduce a general framework for using linear programming in the design of approximation algorithms
followed by an application: vertex cover.

3 Using Linear Programming to Design Approximation Algo-
rithms

Consider a minimization problem. When considering the definition of approximation algorithms, it
seems very hard, even for a specific instance of the problem, to analyze the approximation guarantee

cost(S)
cost(Optimal solution) of the algorithm on the instance, as we are comparing ourselves with an optimal
solution (that is most likely very hard to compute and does not possess any nice structure). The
solution to this is to compare ourselves with a lower bound on the optimum. Indeed, we then have that

cost(S)
cost(Optimal solution)

≤ cost(S)
lower bound on opt

≤ α .

From the above, it is clear that we need a good lower bound to be able to claim a good guarantee
α. To obtain such a lower bound (and to design the approximation algorithm), linear programming is
super handy. A popular framework is as follows:

1. Give an exact formulation of the problem as Integer LP – usually with binary variables (xi ∈ {0, 1}).

2. Relax to LP – xi ∈ [0, 1]

4

3. Solve LP to get a optimal solution x∗ to the LP which is a lower (upper) bound on the optimal
solution to Integer LP and thus the original problem. Then somehow round x∗ to an integral
solution ”without losing too much” (which will determine the guarantee α).

We now use the above framework for the vertex cover problem, and then introduce the concept of
integrality gap.

3.1 Vertex Cover

Here, we apply the framework to get an approximation algorithm for the Vertex Cover problem. First
recall the definition:

Definition 3 (Vertex Cover (VC) Problem) Given a graph G = (V,E) and a weight function on
the vertices w : V → R+, output a set C ⊆ V of minimum weight such that for all {u, v} ∈ E, u ∈ C or
v ∈ C.

First, we define an ILP solving VC: For all v ∈ V , we introduce a variable xv, which is 1 if v ∈ C,
and 0 otherwise. The objective function is

min
∑
v∈V

w(v)xv

and for each {u, v} ∈ E we introduce the constraint xu + xv ≥ 1. This ensures that for each edge, at
least one endpoint is in C. Additionally, we require that for each v ∈ V we have xv ∈ {0, 1}. Note that
at this point our Integer LP formulation is exactly equivalent to the original problem.

Second, we relax the ILP to an LP by allowing that xv ∈ [0, 1]. Actually, it’s sufficient to require
that xv ≥ 0, because having an xv greater than 1 will not satisfy any additional constraint, but only
increase the value of the objective function, so this will not happen in an optimal solution.

Third, we have to do the rounding: Suppose we’ve solved the LP and got an optimal solution x∗.
We will return C = {v ∈ V : x∗v ≥ 1

2} as our solution to VC.

Claim 4 C is a feasible solution.

Proof Consider any edge {u, v} and its constraint. Since x∗u + x∗v ≥ 1, at least one of x∗u, x∗v is ≥ 1
2

and thus in C.

Claim 5 The weight of C is at most twice the value of the optimal solution of VC.

Proof We have∑
v∈C

w(v) =
∑

v∈V :x∗
v≥

1
2

w(v) ≤
∑

v∈V :x∗
v≥

1
2

2x∗vw(v) ≤
∑
v∈V

2x∗vw(v) = 2
∑
v∈V

x∗vw(v) = 2LPOPT ≤ 2V COPT

5

where the first inequality holds because 2x∗v ≥ 1.

So, we have designed a 2-approximation algorithm for Vertex Cover. This is a simple algorithm
using linear programming. To appreciate the power of the framework, I challenge you to find a 2-
approximation algorithm for Vertex Cover (with node-weights) without the use of LPs. (It is possible
but quite difficult.)

3.2 Integrality Gap

The notion of the integrality gap allows us to bound the power of our linear programming relaxation. Let
I be the set of all instances of a given problem. In the case of a minimization problem, the integrality
gap g is defined as

g = max
I∈I

OPT (I)

OPTLP (I)
.

As an example, suppose g = 2, and that LP found that OPTLP = 70. Then, since our problem
instance might be the one which maximizes the expression for g, all we can guarantee is that OPT (I) ≤
2 · OPTLP (I) = 140, so it’s not possible to find an approximation algorithm (using only this linear
programming relaxation) that approximates better than within a factor of g = 2.

3.2.1 Integrality Gap for Vertex Cover

Claim 6 The integrality gap for vertex cover is at least 2− 2
n .

Proof Consider the complete graph on n vertices. We have OPT = n − 1, because if there are 2
vertices that we don’t choose, the edge between them is not covered. However, LPOPT ≤ n

2 , because
assigning 1

2 to each vertex is a feasible solution of cost n
2 , so the optimum can only be smaller. Now,

g ≥ n− 1
n
2

= 2− 2
n .

We remark that our 2-approximation algorithm for vertex cover implies that the integrality gap is at
most 2.

4 Set Cover via Randomized Rounding

Let us now apply the framework to the Set Cover problem. It can be seen as a generalization of the
vertex cover problem and its definition is as follows:

Definition 7 (Set Cover Problem) Given a universe U = {e1, e2, . . . en}, and a family of subsets
T = {S1, S2, . . . Sm} and a cost function c : T → R+, find a collection C of subsets of minimum cost
that cover all elements.

As for vertex cover, we start by giving an exact Integer LP formulation. For each i ∈ {1, . . .m},
define xi, which is 1 if Si ∈ C, and 0 otherwise. The objective function is

min

m∑
i=1

xi · c(Si)

6

and for each element e ∈ U , we add the constraint
∑

Si : e∈Si
xi ≥ 1. This ensures that each element

is covered by at least one set in C. And for each xi, we require that xi ∈ {0, 1} in the ILP. The LP
relaxation is then obtained by replacing the boolean constraints xi ∈ {0, 1} by xi ∈ [0, 1].

Now suppose that each element belongs to at most f sets. Then, as in your exercise on vertex cover
on k-uniform hypergraphs, we can do the following rounding: C = {Si : x

∗
i ≥ 1

f }. In each constraint,
there’s at least one x∗i which is at least 1

f , so each constraint is satisfied. Using the same reasoning as in
the analysis of the vertex cover rounding, we can show that this approximation is within a factor of f .

4.1 A better approximation for Set Cover

If we introduce randomness and allow our algorithm to output non-feasible solutions with some small
probability, we can get much better results (in expectation).

We use the same LP as in the previous section, and will run the following algorithm:

1. Solve the LP to get an optimal solution x∗.

2. Choose some positive integer constant d (we will see later how d affects the guarantees we get).
Start with an empty result set C, and repeat step 3 d · ln(n) times.

3. For i = 1, . . .m, add set Si to the solution C with probability x∗i , choosing independently for each
set.

Now let us analyze what guarantees we can get:

Claim 8 The expected cost of all sets added in one execution of Step 3 is
m∑
i=1

x∗i c(Si) = LPOPT

Proof

E[rounded cost] =
m∑
i=1

c(Si) Pr[Si is added] =
m∑
i=1

c(Si)x
∗
i = LPOPT

From this, we can immediately derive

Corollary 9 The expected cost of C after d · ln(n) executions of Step 3 is at most

d · ln(n) ·
m∑
i=1

c(Si)x
∗ ≤ d · ln(n) · LPOPT ≤ d · ln(n) ·OPT

Note that we have LPOPT ≤ OPT because LP is a relaxation of the original problem, so its optimum
can only be better.

That sounds good, but we should also worry about feasibility:

Claim 10 The probability that a constraint remains unsatisfied after a single execution of Step 3 is at
most 1

e .

Proof Suppose our constraint contains k variables, and let us write it as x1+x2+ · · ·+xk ≥ 1. Then,

Pr[constraint unsat.] = Pr[S1 not taken] . . .Pr[Sk not taken]

= (1− x∗1) . . . (1− x∗k)
≤ e−x

∗
1 · ... · e−x

∗
k (1)

= e−
∑k

i=1 x∗
i

≤ e−1 (2)

7

where (1) follows from the inequality 1− x ≤ e−x and (2) from the fact that
∑

i x
∗
i ≥ 1.

Claim 11 The output C is a feasible solution with probability at least 1− 1
nd−1 .

Proof Using claim 10, we find that the probability that a given constraint is unsatisfied after d · ln(n)
executions of step 3 is at most (

1
e

)d·ln(n)
=

1

nd

and by union-bound, the probability that there exists any unsatisfied constraint is at most

n · 1

nd
=

1

nd−1

Now we have an expected value for the cost, and also a bound on the probability that an infeasible
solution is output, but we still might have a bad correlation between the two: It could be that all feasible
outputs have a very high cost, and all infeasible outputs have a very low cost.

The following claim deals with that worry.

Claim 12 The algorithm outputs a feasible solution of cost at most 4d ln(n)OPT with probability greater
than 1

2 .

Proof Let µ be the expected cost, which is d ln(n) · OPT by corollary 9. We can upper-bound the
bad event that the actual cost is very high: By Markov’s inequality, we have Pr[cost > 4µ] ≤ 1

4 . The
other bad event that we have to upper bound is that the output is infeasible, and by claim 11, we know
that this happens with probability at most 1

n(d−1) ≤ 1
n . Now in the worst case, these two bad events are

completely disjoint, so the probability that no bad event happens is at least 1− 1
4 −

1
n , and if we suppose

that n is greater than 4, this probability is indeed greater than 1
2 .

We have thus designed a randomized O(log n)-approximation algorithm for the set cover problem.
We remark that the used framework has the following general advantage (compared to worst-case

guarantees): we can often get better per-instance guarantee than the general approximation factor:
Suppose we have an instance where LPOPT = 100, and our algorithm found a solution of cost 110. Since
we know that LPOPT ≤ OPT , we can say that our solution on this instance is at most 10% away from
the optimal solution for this instance.

References

[1] Mateusz Golebiewski, Maciej Duleba: Scribes of Lecture 5 in Topics in TCS 2015.
http://theory.epfl.ch/courses/topicstcs/Lecture52015.pdf

8

