Algorithms II September 10, 2024

Lecture 2: Matroid Intersection and Bipartite Matchings

1

Notes by Ola Svensson

These lecture notes is a combination of two lecture notes by Michel Goemans:
o hitp://www-math.mit.edu/ goemans/18433509/matroid-intersect-notes.pdf

o hitp://math.mit.edu/ goemans/18433509/matching-notes. pdf

1 Recall: Matroids and Greedy

We start by recalling the main points from last lecture: definition of matroids which is exactly the
structures for which GREEDY works.

Definition 1 A matroid M = (E,T)? is defined on a finite ground set E and a family T of subsets of
E that are called independent sets satisfying two azxioms:

(I) if XCY andY €T then X € T.
(I) if X€Z andY €T and |Y| > |X| then Jee Y\ X : X U{e} € T.

Remarks:

e The family Z may be exponential in the size of the ground set E (as is the case for example for
graphic matroids of complete graphs). One therefore often assumes that Z is given implicitly by
having a membership/independence oracle: an algorithm that given I C E efficiently answers
whether I € 7.

e The second axiom implies that every mazimal independent set is of maximum cardinality. In other
words, all maximal independent sets have the same cardinality. A maximal cardinality set is called
a base of the matroid.

With the more abstract notation of matroids, the basic greedy algorithm becomes

GREEDY (M, w):

Input: A matroid M = (E,Z) and weights (w,)eck-
Output: A maximum weight base S.

1. Sort and relabel the elements so that wy; > wy > -+ > W\ g
2. S5« 0.

3. fori=1to |E|

4. if S+ieZ then S« S+1.

5. return S.

The concept of matroids was defined so as to enable the correctness analysis of the basic greedy
algorithm. Perhaps more surprisingly, it is if and only if.

IDisclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.
2In these notes, we use M (instead of M) for matroids to not confuse them with matchings.



Theorem 2 (Rado’57/Gale’68/Edmonds’71) For any ground set E = {1,2,...,n}, and a family
of subsets T, GREEDY finds a mazimum weight base for any set of weights w : E — R if and only if
M = (E,Z) is a matroid.

In the last lecture, we saw some examples of matroids (k-Uniform matroids, partition matroids, linear
matroids).

2 Matroid Intersection

Although the concept of matroids forms a rich set of problems that can be solved by the greedy algorithm,
there are many problems that have efficient algorithms but are not matroids. Consider for example the
bipartite matching problem:

Definition 3 Given a bipartite graph G = (V, E), find a matching of mazimum size.
Recall that a matching M C E is a subsel of edges so that every vertex is incident to at most one
edge of M, i.e., |{e€ M :v€e}| <1 forallveV.

Example 1 The edges (1,4) and (3,5) form a matching (of mazimum cardinality).

Let’s see if GREEDY works for maximum cardinality (or max weight) bipartite matching. To do this, we
can verify if (F,Z) is a matroid where

IT={M C E: M is a matching} .

It is easy to see that (E,T) satisfies the downward closed property (I7) of matroids since a subset of a
matching is still a matching. However, the second axiom (I3) is not satisfied which can be seen by taking
the two matchings My = {(1,4), (3,5)} and My = {(3,4)}: although |M;| > |Ms| there is no edge in M;
that we can add to My while maintaining that it is a matching.

This is kind of sad: matroids and simple GREEDY have their limits. On the other hand, we know
from our undergraduate algorithm course that there are efficient algorithms for the bipartite matching
problem. That there are efficient algorithms for the bipartite matching problem is in fact part of a more
general phenomena: it can be described as the intersection of two matroids and any such problem has
an efficient algorithm!

Definition 4 Given two matroids My = (E,Z;) and Ms = (E,Zs) on the same ground set E, their
intersection is

MiNMy = (E,TNT).

Note that the intersection of two matroids satisfy (I;) but not typically (I2). The following adds a lot
of power to the concepts of matroids:

Theorem 5 (Edmonds, Lawler, 70°s) There is an efficient algorithm for finding a maz-weight inde-
pendent set in the intersection of two matroids.>

31t is efficient meaning that it is a polynomial-time algorithm if we can, in polynomial time, answer independence
queries of the type “I € Z;7?” and “I € Z2?” for the two matroids (which is the case for all examples of matroids seen in
class).



The algorithm that gives the above result is quite technical and notation heavy. Instead of describing
it in its full generality, we first see how we can apply the above result to obtain several interesting
algorithmic applications. We then develop an algorithm for the special case of the bipartite matching
problem that share several similarities with the general algorithm.

2.1 Examples

This section is basically taken verbatim from the excellent lecture notes by Michel Goemans available here
(together with a lot of other interesting information): http://www-math.mit.edu/ goemans/18433509/matroid-
intersect-notes. pdf

2.1.1 Bipartite Matching

We already mentioned that the bipartite matching problem is an example of matroid intersection. To see
this, consider a bipartite graph G = (V, E) with bipartition (A, B), i.e., the vertices V are partitioned
into two disjoint sets A and B such that every edge is between a vertex in A and a vertex in B.

Let M 4 be a partition matroid with ground set E where the partition E is given by E = (J{d(v) :
v € A} where §(v) denotes the edges incident to v. Notice that this is a partition since all edges have
precisely one endpoint in A. We also define k, = 1 for every v € A. Thus, the family of independent
sets of M4 is given by

Ia={FCE:|[FNnéw)<1lforalveA}.

In other words, a set of edges is independent for M 4 if it has at most one edge incident to every vertex
of A (and any number of edges incident to every vertex of B). We can similarly define Mp = (E,Zg)
by

Ig={FCE:|Fnd(v)| <1foralwve B}.

Now observe that any F' € 74 N Zg corresponds to a matching in G, and vice versa. And the largest
common independent set Z4 and Zp corresponds to a maximum matching in G.

2.1.2 Colorful Spanning Trees

Suppose we have an undirected graph G = (V, E) and every edge has a color. This is represented by a
partition of E into Fy U Ey U --- U Ej) where each F; represents a set of edges of the same color . The
problem of deciding whether this graph has a spanning tree in which all edges have a different color can
be tackled through matroid intersection. Such a spanning tree is called colorful. Colorful spanning trees
are bases of the graphic matroid M; = (F,Z;) of G which are also independent in the partition matroid
My = (E,I,) defined by Zo, = {F C E: |[FN E;| <1 for all i}.

2.1.3 Arborescences

Given a directed graph D = (V, A) and a special root vertex r € V, an r-arborescence (or just ar-
borescence) is a spanning tree (when viewed as an undirected graph) directed away from 7. Thus, in a
r-arborescence, every vertex is reachable from the root r. As an r-arborescence has no arc incoming to
the root, we assume that D has no such arc.

Example 2 The following directed graph has e.g. the r-arborescence {(r, B),(B,C),(B,D)}.
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r-arborescences can be viewed as sets simultaneously independent in two matroids. Let G denote
the undirected counterpart of D obtained by disregarding the directions of the arcs. Note that if we
have both arcs a1 = (u,v) and ag = (v, u) in D then we get two undirected edges also labeled a; and as
between v and v in G. Define M; = (4,Z;) the graphic matroid corresponding to G, and Mz = (A, Zs)
the partition matroid in which independent sets are those with at most one arc incoming to every vertex
v # r. In other words, we let

y={F:|FNé (v)|<1forallveV\{r}},

where 6~ (v) denotes the set {(u,v) € A} of arcs incoming to v. Thus, any r-arborescence is independent
in both matroids M; and M. Conversely, any set T" independent in both M; and My and of cardinality
|[V| — 1 (so that it is a base in both matroids) is an r-arborescence. Indeed, such a T being a spanning
tree in G has a unique path between r and any vertex v; this path must be directed from the root r
since otherwise we would have either an arc incoming to r or two arcs incoming to the same vertex.

3 Algorithm for Maximum Cardinality Bipartite Matching

This section is largely taken from the lecture notes by Michel Goemans:
http://math.mit.edu/"goemans/18433509/matching-notes.pdf
Recall the (unweighted) bipartite matching problem:

Definition 6 Given a bipartite graph G = (V, E), find a matching of maximum size.
Recall that a matching M C E is a subset of edges so that every vertex is incident to at most one
edge of M, i.e., [{e€ M :vee}| <1 forallveV.

Also recall that a path is a collection of edges (vg, v1), (v1,v2),. .., (Vk—1,vx) Where the v;’s are distinct
vertices. We can simply represent a path as vg —v; — vy — ... — vg.

Definition 7 (Alternating path) An alternating path with respect to M is a path that alternates
between edges in M and edges in E '\ M.

Definition 8 (Augmenting path) An augmenting path with respect to M is an alternating path in
which the first and last vertices are unmatched.

Figure 1: The edges (3,4), (4,1),(1,5),(5,2),(2,6) form an augmenting path

The definition of an augmenting path motivates the following algorithm:



AUGMENTINGPATHALGORITHM(G):

Input: A bipartite graph G = (V, E).

Output: A matching M of maximum cardinality.
1. Initialize M = ().

2. while exists an augmenting path P

3. update M = MAP = (M \ P)U (P\ M).
4. return M.

Exercise 1 Devise an efficient algorithm for finding an augmenting path P (if one exists). What is the
total running time of the AUGMENTINGPATHALGORITHM ?

In the next lecture we will prove that AUGMENTINGPATHALGORITHM indeed finds a maximum
matching, and talk about duality (the vertex cover problem), which lets us certify optimality of the
matching found.



