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Lecture 25: Spectral Graph Theory and Connectivity
Notes by Ola Svenssorl]

]

In this lecture, we continue to study spectral graph theory. We will in particular, see the connection
between the second largest eigenvalue and the connectivity of the graph.

To begin with, we recall the basic notions from the last lecture.

(Normalized) adjacency matrix.

Definition 1 The adjacency matriz A of graph G = (V,E) of |V| = n vertices is a matriz in R"*"
defined by

A;jj =1 tf and only if {i,j} € E
for every two vertices i,j € V.
As in the last lecture, we work with d-regular graphs (all vertices have degree d) to simplify notation.

Definition 2 The normalized adjacency matriz (also called random walk matriz) M of a d-regular graph
is equal to éA, with A being the adjacency matriz.

Eigenvectors and basic combinatorial properties. In the last lecture, we related the eigenvalues
of M to basic combinatorial properties of G. Recall the definition of an eigenvalue and an eigenvector:
Definition 3 A vector v is an eigenvector of a matrix M with eigenvalue \ if
Mv = v
The following is a fact derived using standard linear algebra (and not proved in this course):
Fact 4 If M € R™™*™ is symmetric (as e.g. the normalized adjacency matriz), then:
1. M has n non-necessarily distinct real eigenvalues A\ > Ao > ... > \y.

2. If v1,v9,...,v,_1 are eigenvectors for A1, Aa,..., \i—1, then \; equals the mazximum value \ such
that there is a vector v; orthogonal to vy, ...,v;_1 such that Mv; = \v;. Moreover, any such vector
v; can be selected to be the eigenvector corresponding to \;.
This means in particular that no matter how the first eigenvector vy is chosen, we can always find
an orthonormal basis (corresponding to eigenvectors).

The main result of last lecture was the following:

Lemma 5 Let M be the normalized adjacency matriz of a d-reqular graph G and let Ay > Ao > ... > Ay,
be its eigenvalues. Then:

1. A1 =1 and the all one vector is a corresponding eigenvector.
2. Ay =1 <= (G is disconnected.

3. A = —1 <= one component of G is bipartite.

In the proof, we repeatedly used the following observation that also gives good intuition:
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Observation 6 Consider x € R™ which assigns a value (i) to each vertex i € V and let y = Mz,
where M is the normalized adjacency matriz of a graph G = (V, E). Then

wiy= Y "

{i,j}€E

which is the average value according to x of v’s neighbours.

1 The mixing time of random walks

Let G = (V, E) be a d-regular graph and M its normalized adjacency matrix. Recall that M is also
called the random walk matrix. This is because, if we let p be an initial distribution over the vertices,
then ¢ = Mp is the distribution over vertices where ¢(v) equals the probability that vertex v is output
by the following process:

1. Selecting at random an initial vertex v; with probability p(vq).
2. Take a single random step: move to a random neighbor vy of v;.
3. Output vs.

Similarly M¥p is the distribution over vertices obtained by doing the above process with k random
steps instead of one.

Suppose we start our random walk from a single vertex. That is p = (1,0,...,0) puts all its
probability mass on a single vertex, say s. A natural question is then how many steps k we need
to take in order for M*p to be close to the uniform distribution. This is called the mixing time of the
graph G. Some observations are as follows:

e If the graph is not connected, we will only reach vertices in the same component as s and we will
thus never (no matter the choice of k) become “close” to the uniform distribution of vertices.

e If the graph is bipartite, then the random walk will alternate between the left-hand and right-hand
side of vertices. And thus again it will not converge to a uniform distribution (no matter k)ﬂ

Notice that by Lemma [5| the above cases correspond to when Ao = 1 (the graph is disconnected) and
An = —1 (the graph is bipartite). The next result shows that the quantity max(|Az|, |\,|) are exactly
the quantities that tell us how fast the random walk is mixing:

Lemma 7 Consider a d-reqular graph G = (V,E) and let 1 = Ay > Ay > ... > X\, > —1 be the
eigenvalues of its normalized adjacency matriz M. If max(|Az|, |An|) < 1—¢, then no matter from which
vertex s we start, after O(% logn) steps we will be at any vertex with probability ~ % More precisely, if
we let p be the vector that is equal to 1 on the vertex where the random walk starts, then
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when k = £logn for some constant c.
Proof Let’s assume, for the sake of simplicity, that the vertices are ordered so that our start vertex
s is first. That is, p’ = (1,0,...,0). Let (vq,...,v,), where v; is an eigenvector for the eigenvalue \;,

2To overcome this, one often does a “lazy” random walk that with probability 1/2 stays at the same vertex and with
probability 1/2 moves to a random neighbor.



be an orthonormal basis (which exists by Fact . It means we can decompose p on it (we can write p
in the eigenvector basis):
n
p= Z QU4
i=1

where a; = (p,v;). In particular, oy = (p,v1) = % Since we also have (%, . %) = ﬁ (ﬁ, ,ﬁ),
we can write:
HM’%—(%,... ||2 Zaz)\ v;
n
= Z |)\i|k||aivi||§ (since vy, ..., v, are orthogonal)
i=2

<(1—e)t Z lawwi|[5 (since |A;| < (1 —e) for i > 2)

(I—¢) (again by orthogonality of v;’s)
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So if we take k = Slogn and let A = |3, v
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If we take ¢ > 2, we obtain the result that we wanted. H
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2 Graph connectivity and Cheeger’s inequalities

In the previous section, we saw that the mixing time is very related to the second eigenvalue Ay of the
normalized adjacency matrix. It is also easy to imagine that the more “well-connected” a graph is the
more rapidly it is mixing: a random walk on a cycle would take much longer time to mix than a random
walk on the complete graph.

Moreover, in Lemmal[5, we saw that Ao = 1 if and only if the graph is disconnected. This means that
if Ay then we can cut the graph into two parts without removing any edges. But what happens when
Ao is close but not equal to 1?7 In this section, we shall see quantative bounds that further strengthens
the relationship between Ay and the connectivity of a graph. Informally we shall see that

e If )\ is small then there is no small cut of G (and as we saw in last section a random walk is
rapidly mixing).

e If )\, is close to 1 then there is a sparse cut that we can find efficiently (decompose the graph into
communities).

When talking about the connectivity of a graph, we wish to understand how much we need to
“change” the graph so as to partition the graph into two pieces. One way to find such a partitioning
is to simply calculate a min cut. As we have seen, this can be done in polynomial time, but simply
minimizing the number of edges crossing the cut can also lead to silly solutions. For instance, it may
be optimal to split off one vertex from everything else. Often a more reasonable approach would be to
attempt to minimize the number of edges while simultaneously making sure each side of the partition
has a lot of edges. In the d-regular case that we study, we simply want to promote more balanced cuts.
To this end, we define the conductance of a cut and a graph.



Definition 8 Let G = (V, E) be a d-reqular graph with n vertices. We define the conductance h(S) of
acutSCV:

)
S = TSIV ST

where 6(S) denotes the set of edges crossing the cut S.
We also define the conductance h(G) of the graph G:

hMG) = Inin h(S)
Notice that the conductance h(S) of a cut roughly measures the fraction of edges that leaves the set S.
So if h(S) = 0.1 this would approximately mean that only 10 — 20% of the edges leave S and 80 — 90%
stay inside S. Such a set S would indicate a very strong community in e.g. Facebook. Finding such sets
efficiently is therefore intensely studied and spectral graph theory has turned out to be very successful.
Indeed, the conductance of a graph is closely related to Ao:

Theorem 9 (Cheeger’s Inequalities)

L @) < VAT N

We remark that both bounds are tight. A tight example for the lower bound is the hypercube and
a tight example for the upper bound is a cycle.

In this lecture, we first prove the “easy” direction that % < h(G) and if time we then prove the
other “harder” direction. Before giving the proof of the lower bound, we would like to emphasize that
the upper bound is in fact given by a very fast algorithm, called spectral partitioning:

Algorithm Spectral-Partitioning:

1. Input: graph G = (V, E) and eigenvector va € R™ corresponding to second largest eigenvalue Ao
of the normalized adjacency matrix M of G.

2. Sort the vertices of V' in non-decreasing order of values in vq, that is let V' = {1,...,n} where
v2(1) < va(2) < ... <wa(n).

3. Let i € {i,...,n— 1} be such that h = ({1,...,4}) is minimal.
4. Output S ={1,...,i}.

The proof of the upper bound given by Cheeger’s inequalities shows that the returned set S satisfies
h(S) < /2(1 — X2). The intuition is as follows. If Ao = 1, then we proved the last time that ve will have
no edges between vertices with different values in vo. Hence, the above algorithm will output a perfect
cut (cutting no edges) in this case. Now in the case, when \q is close but not equal to 1 the algorithm
will still try all cuts with the intuition that nearby vertices have a similar value in v and take the best.
Apart from the excellent guarantee of the above algorithm, it is very fast. It runs in O(|V|log |V| + |E|)
time given the eigenvector vy. And if computing vy is too costly, one can also see that an approximate
eigenvector will be fine.

Let us now return to the proof that % < h(G). For this, it will be convenient to consider the
eigenvalues of the normalized adjacency matrix M as solutions to optimization problems.



It will be convenient to consider an alternative

Eigenvalues as solutions to optimization problems
way to define the eigenvalues of M. Namely as the solution to the problem of maximizing the Rayleigh

quotient
2T Mz
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T
Lemma 10 )\; = max &Mz,
zeRn T X
. T p T]\/[ T)\ T
Proof First, let’s prove A; < max M2 Indeed, Lot = L71% — N\, I % — ),
zERn ' w vy v1 vy v1 vy v1
T . . .
Next, we need to prove A\; > max ww% L. Let y be the vector that attains the maximum value. Since
zeR”
n 2 n 2
n T Z ;i Z @
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(171, V2, ...

T . . .
Lemma 11 Ay = max “”xThi"”, where vy s the eigenvector corresponding to \i.
rER™:x Ly :

Exercise (very similar) to the last lemma. Hl

Proof
By Lemma |11} we have

Proving the “easy direction” of Cheeger’s inequalities.
T Mz

1—X=1— max =
zeR™:xlv; T X

. ( xTMx)
= min 1-— 7
zER™:x vy Tt T
2T (I — M)x

= min 7
zER™:x | vy xrtx

The matrix L := I — M is called the normalized Laplacian matrix (recall last week’s exercises) and

we have the identity
1 ) .
Le= 3 (@) -2l
{i,j}€E

S oyen(@(i) - 2(7)?

1—)X= min
zeR™:x 1l vy d- .Z‘TJ?

We have thus

This looks like a continuous relaxation of the cut problem and it is indeed the intuition behind both
Cheeger’s inequalities. Now for the lower bound, consider a cut S. We assume without loss of generality

that |S| < |V|/2 since we otherwise could consider |V \ S|. Now define y € R™:
(.):{(1—|S/|V|) ifies

—IS|/|V| ifigS.
It is an easy exercise to see that y is orthogonal to the all ones vector v;. That is y L v;. Hence,

Srijyen(@() —z(5))? - Srijres@) —y())?
- d-yTy

1—Xy= min
xeR™:x vy d- (ETQ?



Notice that the numerator equals |§(S)|:
Yo W@ —yG) = Yo A= ISI/IVIH+ISI/IV) = 16(5)].
{i,j}€E {i,j}eE
And the denominator:

Ty =Y y(@)? =S| (L= [SI/[V])* + (V] = 1S]) (ISI/IV])* =
eV

[SIVA S|

>15|/2,
T ISl

where the last inequality holds because |V \ S| > |V|/2 by assumption. Combining the above,

L= _ 1 X qpnes®@ —y@)* 1 15(S) _ |5(S)]
2 2 d-yTy =2d-18]/2 " d-|S]

It follows that the conductance of every cut is at least (1 — A2)/2 and so (1 — A2)/2 < h(G) as required.

= h(S).

2.1 Proof of the hard direction

Let vy be the second eigenvector. Then our goal is to prove that

MG) < VBT 0] where 1 — g = Ztiatep(t2l) Zv20)7

d- ’U2 (%)

We do so in two steps. First we show that we can extract a vector z from vy that has support at
Y pigren@@—e()? Z{”)eE(W(Z) v2(f))*

d-zTz d-vivs

most n/2 and . Second, we use z to extract a cut S such that

h(S) < v/2(1— Aa).
Lemma 12 There is a non-negative vector x € R™ of support at most n/2 such that

Suuesld) ~26)? _ Tiagpen(sali) =)

d-zTx d-vivy

Proof Consider what happens to expression if we shift v by the unit vector times a constant c:

Stigyen(2(i) e —w2(f) = ¢)?
d- (vy + 1c)T (ve + 1c)

The numerator does not change and the denominator only increases using that vo L 1. Hence, we can
obtain a new vector y = vy + v1 where y has equal number of positive entries as negative entries and

i per®() —y(5))? Z{Z,j}eE(W( i) — v2(j))?
d-yTy - d - vlvy ’
Now define a and b by a(i) = max(0,y(¢)) and b(¢) = min(0, y(i)). Then
Z{i,j}eE( (1) —y(5))? Z{i,j}eE(a(i) —a(j) +0(i) = b(4))?
d-yTy d-(aTa+ bTb)
 Caeslal®) e + X pien) ~ 00
- d-(aTa+bTb) '

The statement now follows because min A/B,C/D < (A + C)/(B + D) for positive numbers. So z in
the statement can either be selected to be a or —b. l

From now on, we only need to round a nonnegative vector x to a set of small conductance.



Lemma 13 For any non-negative vector x of support at most n/2, there is a set S in the support of x
such that

: ¢ pZtaneslel) ~a()f

h(S)

Before proving this lemma, we prove an easier statement. We show that if we drop all squares then
we get an exact characterization of the conductance.

Lemma 14 For any non-negative vector x of support at most n/2, there is a set S in the support of x
such that

Z{z’,j}eE |z (i) — x(j)|
"= e

Proof Since the right hand side is homogeneous in & we may assume that max;ey z(i) < 1. Let
t ~ [0,1] be chosen uniformly at random, and let Sy := {i : x(¢) > ¢}. Then by linearity of expectation,

E[|Si)] =) Prlie S]=> x(i).

i€V i€V

Also for any edge (i, j) the probability that this edge is cut is exactly |x(i) — 2(j)|. Therefore,

E[E(S,S)] = Y Prl(i,j)iscut]= Y |2(i)—2()|.

{i,j}€E {i,j}€E

Therefore,

E [E(St, St)] _ Z{i,j}eE |2(@) — z(7)]
dE[|S:]] >iev 2(0) '

Note that in general if % < ¢ it may be that A/B > ¢ with probability 1. For example, if A= B = —1
with probability 1/2 and A = 1,B = 2 with probability 1/2. Then E[A] = E[A] /E[B] = 0 but
A/B > 1/2 with probability 1.

However, if A, B are non-negative (with probability 1) then E[A] /E[B] < ¢ implies that A/B < ¢
with a positive probability. This follows from the following simple inequality. For any set of non-negative
numbers a1, asg, ..., Gm,b1,b2, ..., by > 0 we have

a; ar + -+ am a;

b;

min < < max
1<i<m b; by +-- -+ by, 1<i<m

Therefore there is a set Sy that satisfies the conclusion of the lemma. Note that |S;| < n/2 since z has
support at most n/2. B

By the above lemma, to prove Lemma [I3] all we need to do is to construct a vector y such that

Soneslv® —y0)\" _ Sppesli) ()7
d-> v y(i) d-y'y '

(1)



Proof (proof of Lemma Define y(i) = x(i)?. To show (1)) we use Cauchy-Schwarz inequality:
Z{i,j}eE ly(@) =y ()| _ Z{i,j}eE |2(i)? — 2(5)?]
d- Ziev y(z) d- Ziev x()Q
_ 2gigyer o) —2()l|2(0) + 2(5)]
d- Ezev x(z)
@MEE [2(0) — 2 ()P /g1 sy [20) + 2 ()P
d-3 ey (i)
- [ Ztser o) —2G)P
- d-) ey o(i)? 7

where for the last inequality we used that (a + b)? < 2a? + 2b? and so

Z l2(i) + z(j)|* < Z (2x(i)* + 22(j ZQdaz

{ij}eE {i.j}eE iev
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