
Advanced Algorithms December 16th, 2024

Lecture 24: Introduction to Spectral Graph Theory
Notes by Ola Svensson1

Spectral Graph Theory studies how the eigenvalues and eigenvectors of the adjacency matrix (or
related matrices), which are purely algebraic quantities, relate to combinatorial properties of the graph.
This is a very active research area with numerous modern applications such as image segmentation,
finding min/max cuts, and clustering (community detection).

Let us start with some images to increase our appetite for learning more about this area. The following
two graphs are drawn using the coordinates of two eigenvectors corresponding to large eigenvalues of
the adjacency matrix
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L = lap(A);

[v,d] = eigs(L, 3, ’sa’);

gplot(A,v(:,[2 3]))

That’s a great way to draw a graph if you start out knowing nothing about it. It’s the first thing I
do whenever I meet a strange graph. Note that the middle of the picture is almost planar, although
edges do cross near the boundaries.

Finally, let’s look at a spectral embedding of the edges of the dodecahedron.

load dodec

L = lap(A);

[v,d] = eigs(L,3,’sa’);

gplot(A,v(:,[2 3]))
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You will notice that this looks like what you would get if you squashed the dodecahedron down
to the plane. The reason is that we really shouldn’t be drawing this picture in two dimensions:
the smallest non-zero eigenvalue of the Laplacian has multiplicity three. So, we can’t reasonably
choose just two eigenvectors. We should be choosing three that span the eigenspace. If we do, we
would get the canonical representation of the dodecahedron in three dimensions.
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load airfoil

A = sparse(i,j,1,4253,4253);

A = A + A’;

gplot(A,[x,y])

We will now draw it using coordinates from the eigenvectors. I will plot vertex u at point
( 2(u), 3(u)) I will draw the edges as straight lines between the vertices they connect.

L = lap(A);

[v,d] = eigs(L,3,’sa’);

gplot(A,v(:,[2 3]))

Let’s zoom in on a small portion, so that we can see how nice the embedding is.

and the following graph is drawn using the coordinates of two eigenvectors corresponding to small
eigenvalues of the adjacency matrix
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Figure 1: Spectral embeddings of the cycle on 20 nodes (top two figures), and the 20 ⇥ 20
grid (bottom two figures). Each figure depicts the embedding, with the red lines connecting
points that are neighbors in the graph. The left two plots show the embeddings onto the
eigenvectors corresponding to the second and third smallest eigenvalues; namely, the ith
node is plotted at the point (v2(i), v3(i)) where vk is the eigenvector corresponding to the
kth largest eigenvalue. The right two plots show the embeddings onto the eigenvectors
corresponding to the largest and second–largest eigenvalues. Note that in the left plots,
neighbors in the graph are close to each other. In the right plots, most points end up far
from all their neighbors.
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1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.
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Notice that when we draw graphs using eigenvectors corresponding to large eigenvalues of the adjacency
matrix (first two drawings), we have that adjacent vertices are depicted nearby. When we select eigen-
vectors corresponding to small eigenvalues, the opposite seems to happen (last drawing). In this lecture,
our goal is to explain some of these behaviors.

Before continuing, let me remark that there is a lot to say about spectral graph theory (and we have
only two lectures). Two courses devoted to the subject are [1] and [2]. The first two drawings are taken
from [1] and the last one from [3].

1 The (Normalized) Adjacency Matrix and Eigenvalues/Eigenvectors

Recall the definition of the adjacency matrix of an undirected graph:

Definition 1 The adjacency matrix A of graph G = (V,E) of |V | = n vertices is a matrix in Rn×n

defined by

Aij = 1 if and only if {i, j} ∈ E

for every two vertices i, j ∈ V .

It will also be convenient to work with the so-called normalized adjacency matrix. To simplify
notation, we assume throughout the lecture that all graphs that we work with are d-regular.
That is, the degree of each vertex equals d. However, all definitions and results can be generalized to
the case when vertices have different degrees.

Definition 2 The normalized adjacency matrix M of a d-regular graph is equal to 1
dA, with A being the

adjacency matrix.

Example (2-regular graph):

a

b c

d
A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 M =


0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0


The normalized adjacency matrix M is also called the random walk matrix of a graph. The reason for

this becomes clear if we consider the above example graph. Suppose you start at vertex a corresponding.
Hence, the distribution over the vertices where you are standing can be represented by the vector
(1, 0, 0, 0) you are with probability 1 at vertex a and probability 0 at any other vertex. Now suppose
you go to a random neighbor in your graph, then with probability 1/2 you end up at vertex b and with
probability 1/2 you end up at vertex d. Thus after one random step, the distribution of your location is
represented by the vector (0, 1/2, 0, 1/2). Now notice that in the example above

M


1
0

0

 =


0
1/2
0
1/2


More generally, for any starting distribution p ∈ Rn (where pi denotes the probability to be at vertex
i ∈ V initially), Mp is the probabilitydistribution after a single random step. Repeating this argument
gives that Mkp is the distribution after k random steps.
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1.1 Basic properties of eigenvectors/eigenvalues of M

The normalized adjacency matrix M has some special structure, which we will exploit:

Observation 3 M is a real symmetric matrix.

Recall the definition of eigenvalue and eigenvector of a matrix.

Definition 4 A vector v is an eigenvector of a matrix M with eigenvalue λ if

Mv = λv

The following is a fact derived using standard linear algebra (and not proved in this course):

Fact 5 If M ∈ Rn×n is symmetric, then:

1. M has n non-necessarily distinct real eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn.

2. If v1, v2, . . . , vi−1 are eigenvectors for λ1, λ2, . . . , λi−1, then λi equals the maximum value λ such
that there is a vector vi orthogonal to v1, . . . , vi−1 such that Mvi = λvi. Moreover, any such vector
vi can be selected to be the eigenvector corresponding to λi.
This means in particular that no matter how the first eigenvector v1 is chosen, we can always find
an orthonormal basis (corresponding to eigenvectors).

Example: (using the same 4-cycle)

λ1 = 1, λ2 = 0, λ3 = 0, λ4 = −1

v1 =


1
2
1
2
1
2
1
2

 v2 =


0
− 1√

2

0
1√
2

 v3 =


− 1√

2

0
1√
2

0

 v4 =


− 1

2
1
2
− 1

2
1
2


In the next section, we will get a better intuition regarding the eigenvalues of the normalized adjacency

matrix and relate them to basic combinatorial properties.

2 Relating the eigenvalues to basic combinatorial properties

The following gives a very good intuition to keep in mind when dealing with spectral graph theory. It
already tells you that for a large eigenvalue, we would like adjacent vertices to have similar values (as
we saw in the drawings).

Observation 6 Consider x ∈ Rn which assigns a value x(i) to each vertex i ∈ V and let y = Mx,
where M is the normalized adjacency matrix of a graph G = (V,E). Then

y(i) =
∑
{i,j}∈E

x(j)

d
,

which is the average value according to x of v’s neighbours.

Using this observation, the following properties become quite easy to prove

Lemma 7 Let M be the normalized adjacency matrix of a d-regular graph G and let λ1 ≥ λ2 ≥ . . . ≥ λn
be its eigenvalues. Then:
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1. λ1 = 1.

2. λ2 = 1 ⇐⇒ G is disconnected.

3. λn = −1 ⇐⇒ one component of G is bipartite.

Proof of 1: Since M


1
1
...
1

 = 1 ×


1
1
...
1

, 1 is an eigenvalue and therefore λ1, the greatest of all

eigenvalues, must be greater or equal to 1.
Additionally, if we consider any eigenvector x and i ∈ V such that x(i) is maximized and y = Mx, we
have y(i) =

∑
{i,j}∈E

x(j)
d ≤

∑
{i,j}∈E

x(i)
d = x(i). Therefore, λ1 ≤ 1.

Proof of 2: By the proof of property 1 we saw that we can select the first eigenvector v1 corresponding
to λ1 = 1 to be the all 1’s vector. We will show that there is a vector v2 ⊥ v1 so that Mv2 = v2 if and
only if G is disconnected. In other words, λ2 = 1 if and only if G is disconnected.

Suppose first that the graph G is disconnected and so that there is a subset S ( V of vertices that
are not connected to vertices in V \ S. define v2 by

v2(i) =

{
1/|S| if i ∈ S
−1/|V \ S| if i ∈ V \ S

Notice that v2 is perpendicular to the all 1’s vector v1, i.e., v2 ⊥ v1. We now show that Mv2 = v2. Fix
a vertex i and let y =Mv2. We have that

y(i) =
1

d

∑
{j,i}∈E

v2(j) =
1

d

∑
{j,i}∈E

v2(i) = v2(i) ,

where the second inequality follows from that every neighbor of i has the same value (with respect to
v2) by definition. Hence, we have λ2 = 1 if G is disconnected.

Now suppose that G is connected. Now let v2 be an eigenvector corresponding to the second
eingevalue λ2. We have that v2 is is perpendicular to the all 1’s vector v1, We now show that λ2 < 1.
Indeed, since v2 ⊥ v1, v2 cannot assign the same value to all vertices. Therefore, as G is connected,
there must be a vertex i that has at least one neighbor j for which v2(i) 6= v2(j). Select such a vertex
i that maximizes v2(i). By the selection of i we have that for any {i, j} ∈ E we have v2(i) ≥ v2(j) and
for at least one neighbor j∗ we have v2(i) > v2(j

∗). Again let y =Mv2. It follows that

y(i) =
1

d

∑
{j,i}∈E

v2(j) ≤
1

d

 ∑
{j,i}∈E:j 6=j∗

v2(i) + v2(j
∗)

 < v2(i)

and thus λ2 < 1.

The proof of property 3 is left as an exercise.
Remark The second property can be generalized: |{i|λi = 1}| is the number of connected components
in G.
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