December 16th, 2024

Advanced Algorithms
Lecture 24: Introduction to Spectral Graph Theory

Notes by Ola Svenssorl]

]

Spectral Graph Theory studies how the eigenvalues and eigenvectors of the adjacency matrix (or
related matrices), which are purely algebraic quantities, relate to combinatorial properties of the graph.
This is a very active research area with numerous modern applications such as image segmentation,

finding min/max cuts, and clustering (community detection).
Let us start with some images to increase our appetite for learning more about this area. The following

two graphs are drawn using the coordinates of two eigenvectors corresponding to large eigenvalues of

the adjacency matrix
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coordinates of two eigenvectors corresponding to small

and the following graph is drawn using the
eigenvalues of the adjacency matrix

IDisclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain

inconsistent notation, typos, and omit citations of relevant works.



Notice that when we draw graphs using eigenvectors corresponding to large eigenvalues of the adjacency
matrix (first two drawings), we have that adjacent vertices are depicted nearby. When we select eigen-
vectors corresponding to small eigenvalues, the opposite seems to happen (last drawing). In this lecture,
our goal is to explain some of these behaviors.

Before continuing, let me remark that there is a lot to say about spectral graph theory (and we have
only two lectures). Two courses devoted to the subject are [I] and [2]. The first two drawings are taken
from [I] and the last one from [3].

1 The (Normalized) Adjacency Matrix and Eigenvalues/Eigenvectors
Recall the definition of the adjacency matrix of an undirected graph:

Definition 1 The adjacency matriz A of graph G = (V, E) of |V| = n wvertices is a matriz in R™*"
defined by

Ajj =1 tf and only if {i,j} € E
for every two vertices i,j € V.

It will also be convenient to work with the so-called normalized adjacency matrix. To simplify
notation, we assume throughout the lecture that all graphs that we work with are d-regular.
That is, the degree of each vertex equals d. However, all definitions and results can be generalized to
the case when vertices have different degrees.

Definition 2 The normalized adjacency matrizx M of a d-reqular graph is equal to éA, with A being the
adjacency matrix.

Example (2-regular graph):
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The normalized adjacency matrix M is also called the random walk matrix of a graph. The reason for
this becomes clear if we consider the above example graph. Suppose you start at vertex a corresponding.
Hence, the distribution over the vertices where you are standing can be represented by the vector
(1,0,0,0) you are with probability 1 at vertex a and probability 0 at any other vertex. Now suppose
you go to a random neighbor in your graph, then with probability 1/2 you end up at vertex b and with
probability 1/2 you end up at vertex d. Thus after one random step, the distribution of your location is
represented by the vector (0,1/2,0,1/2). Now notice that in the example above
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More generally, for any starting distribution p € R™ (where p; denotes the probability to be at vertex
¢ € V initially), Mp is the probabilitydistribution after a single random step. Repeating this argument
gives that M*p is the distribution after k& random steps.



1.1 Basic properties of eigenvectors/eigenvalues of M
The normalized adjacency matrix M has some special structure, which we will exploit:
Observation 3 M is a real symmetric matrix.

Recall the definition of eigenvalue and eigenvector of a matrix.
Definition 4 A vector v is an eigenvector of a matrix M with eigenvalue \ if

Muv = v

The following is a fact derived using standard linear algebra (and not proved in this course):
Fact 5 If M € R™*" is symmetric, then:

1. M has n non-necessarily distinct real eigenvalues Ay > Ay > ... > A,

2. If v1,v9,...,v,_1 are eigenvectors for A1, Aa, ..., Ai—1, then \; equals the mazximum value X such
that there is a vector v; orthogonal to vy, ...,v;—1 such that Mv; = Av;. Moreover, any such vector
v; can be selected to be the eigenvector corresponding to A;.
This means in particular that no matter how the first eigenvector vy is chosen, we can always find
an orthonormal basis (corresponding to eigenvectors).

Example: (using the same 4-cycle)

M=1,0=0X =0\ =—1
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In the next section, we will get a better intuition regarding the eigenvalues of the normalized adjacency
matrix and relate them to basic combinatorial properties.

2 Relating the eigenvalues to basic combinatorial properties

The following gives a very good intuition to keep in mind when dealing with spectral graph theory. It
already tells you that for a large eigenvalue, we would like adjacent vertices to have similar values (as
we saw in the drawings).

Observation 6 Consider x € R™ which assigns a value x(i) to each vertex i € V and let y = Mz,
where M is the normalized adjacency matriz of a graph G = (V, E). Then

. x(J
siy= Y 22,
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which is the average value according to x of v’s neighbours.

Using this observation, the following properties become quite easy to prove

Lemma 7 Let M be the normalized adjacency matriz of a d-regular graph G and let A\ > Ao > ... > A\,
be its eigenvalues. Then:



1. M =1.

2. Ay =1 <= (G is disconnected.

3. A\p = —1 <= one component of G is bipartite.
1 1
Proof of 1: Since M =1x , 1 is an eigenvalue and therefore A;, the greatest of all
1 1

eigenvalues, must be greater or equal to 1.
Additionally, if we consider any eigenvector x and ¢ € V such that x(4) is maximized and y = Mz, we
have y(i) = > % < ¥ % = 2(7). Therefore, \; <1. B
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Proof of 2: By the proof of property 1 we saw that we can select the first eigenvector v, corresponding
to A1 = 1 to be the all 1’s vector. We will show that there is a vector vy L v; so that Mwvy = vy if and
only if G is disconnected. In other words, Ay = 1 if and only if G is disconnected.

Suppose first that the graph G is disconnected and so that there is a subset S C V of vertices that
are not connected to vertices in V'\ S. define vy by

Uz(i):{ms ifies
~1/[V\S| ificV\S

Notice that vs is perpendicular to the all 1’s vector vy, i.e., vo L v;. We now show that Muvy = vy. Fix
a vertex ¢ and let y = Mwvy. We have that
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where the second inequality follows from that every neighbor of i has the same value (with respect to
vg) by definition. Hence, we have Ao = 1 if G is disconnected.

Now suppose that G is connected. Now let vy be an eigenvector corresponding to the second
eingevalue A\o. We have that vs is is perpendicular to the all 1’s vector v;, We now show that Ay < 1.
Indeed, since vy | vy, vy cannot assign the same value to all vertices. Therefore, as G is connected,
there must be a vertex ¢ that has at least one neighbor j for which v (i) # va(j). Select such a vertex
¢ that maximizes vy (7). By the selection of ¢ we have that for any {7, j} € F we have vs(i) > v2(j) and
for at least one neighbor j* we have va(i) > va(j*). Again let y = Muvy. It follows that
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and thus A < 1. B
The proof of property 3 is left as an exercise.

Remark The second property can be generalized: |{i|\; = 1}| is the number of connected components
in G.
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