Advanced Algorithms December 10, 2024

Lecture 23: Submodularity and Maximization

Notes by Ola Svensson

(These notes are based on notes written by Moran Feldman and Justin Ward who were postdocs at EPFL
and are now faculty at the Open University and Queens Mary University, respectively.)

In this lecture, we consider the problem of maximizing a submodular function. We use the same
notation as last lecture. We assume that all functions f : 2V — R we deal with in this lecture are

e non-negative: f(S) >0 for all S C N,
e and normalized: f(()) = 0.

Suppose also that f : 2V — R is monotone: f(S) < f(T) for all S C T C N. Then, we must have
f(N) > f(S) for any other S C N, so unconstrained maximization is trivial in this case. However, the
following constrained problem arises naturally in many settings: we are given a parameter k, and must
find a set S C NN of size at most k& that maximizes f. Natural applications of this setting is e.g. data
summarization and influence maximization.

1 Cardinality Constrained Monotone Maximization

Recall that for weighted maximization problems with linear objective, this problem is solved optimally
by the greedy algorithm. This result in fact holds even if we replace the constraint that |S| < k by a
general matroid constraint. The natural generalization of the greedy algorithm to submodular functions
is as follows: at each step, we choose the element w ¢ S with maximal marginal gain f(u]|S) and add u
to S.

Input: Ground set N, value oracle for monotone submodular f : 2V — R, parameter
0<k<|N|
Output: S C N with |S] <k
S < 0;
fort=1to k do
L Let u; = argmax,cn\s f(u|S);
S+ Su {ui};

return S;

Notice that if f(S) = > .gwe for some set of weights w, this is indeed exactly the standard greedy
algorithm. Here, however, we find that the algorithm can produce a suboptimal solution. Consider a
coverage function with sets:

T = {1,2,3,4}
T = {1,2,5)
13 = {37476}

Suppose k = 2. Then, the greedy algorithm first selects T7 and then takes either T5 or T3. This covers
5 total elements. However, taking T and T3 covers 6 elements!

Despite this, we can show that the greedy algorithm gives a constant factor approximation. Let’s
start by proving a simple claim that holds for any submodular function:

Lemma 1 Let f : 2V — R be a submodular function and let S,T C N. Then, Yeers (€] S) =
f(TUS) = f(S).

Proof Order the elements of 7'\ S as e, ez,...,em\5 and let T; be the set containing the first
elements in this ordering. Observe that Ty = () and Timns) =T \ S. Then,

IT\S|

S felS)= 3 fleils)
=1

eeT\S
IT\S|

> Y fle| SUTm)
i=1
IT\S|

= > f(TUS) - f(Tis 1 US)
i=1

= f(MNir\syUS) — f(ToUS)

= f(TUS) - f(S).

Here, we have used submodularity for the inequality, and then noted that the sum is telescoping.

We can now prove the following result:

Theorem 2 Let S be the set produced by the greedy algorithm for maximizing a monotone submodular
function f subject to a cardinality constraint k. Let O be any set of at most k elements. Then, f(S) >

(1-1/e)f(0) ~ 0.632(0).

Proof Notice that since f is monotone, we can assume that |O| = k, since we can always add elements
to it if this is not the case without decreasing its value.

Let u; be the ith element selected by the greedy algorithm and let S; be the set {u; : j < i}
containing the first i elements selected. Note that Sy = () and S = S. Consider an iteration i and let e
be any element in O \ S;_;. Then, by our greedy choice we have:

flui| Si—1) > f(e| Si-1)

We have one such inequality for each e € O\ S;_1. Adding them all together and applying Lemma 1,
we get:

O\ Sical - f(ui|Sima) > > flelSiz1) = f(Sim1U0) = £(Siz1) > f(O) = f(Si-1),

e€cO\S;_1

where the last inequality follows from the fact that f is monotone. Now, note that |O\ S;_1| < k and
also f(u;|S;—1) > 0 since f is monotone. Thus,

k- flui|Si—1) =[O\ Si—1] - f(ui | Si—1) = f(O) = f(Si-1)-
Dividing by k, and recalling the definition of S;_; and S;, we get:
F(8:) = f(Siz1) = f(ui] Si—1) > ££(0) — £f(Si=1).

Let’s rearrange this to:

f(S) > (1- %) f(Si—1) + %f(O)- (1)
Notice that this gives a recurrence for f(S;). We now show by induction on 4.
f8)= (1-(1-4)") 10) (2)

where we used (1) and the induction hypothesis in the first and second lines, respectively.
To complete the proof, it suffices to plug in ¢ = k in (2) and then note that (1 — +)¥ < e~! (since
1+ x < €", as is seen by considering Taylor series expansion of the exponential function). l

We briefly remark that the approximation ratio of (1 —1/e) is in fact the best possible for the general
problem. If f is somehow given to us explicitly, it is NP-hard to do better. Similarly, if f is given as a
value oracle (and so the only way to get information about it is to query values) then one can show that
it is impossible to do better without making a super-polynomial number of value queries. This latter
result is information-theoretic and holds even if P = NP.

2 Unconstrained Submodular Maximization

Now, suppose that f is not monotone. Then, even without constraints, it makes sense to ask what set
S maximizes f(S). One idea is to just run the greedy algorithm, and stop when no element gives any
positive marginal gain (i.e. when f(e|S) <0 forallee N\ S.
However, this algorithm performs very badly on the following example function. Let N = {uy, ua, ... u,,v}.
Then, define:
2 ifves

ﬂS)Z{ S| ifvgs

One can verify that f is indeed submodular. The optimal solution chooses S = {uy,us,...u,} and has
value n, but the greedy algorithm would choose {v}, and of value 2.

2.1 A greedy deterministic %—approximation algorithm

So we need a better algorithm. We still use a greedy approach, but one which is “greedy from two sides”
(one side being () and the other being N):

Input: ground set N, value oracle for submodular function f:2Y¥ — R
Choose an arbitrary order uq,us, ... u, on the elements.;
XO < @,
Yo < N;
for i =1 ton do
Let a; = f(Xi—1 U{w;}) — f(Xi-1);
Let b; = f(Yi1 \ {ui}) = f(Yi-1);
if a; > bi then
‘ X+ X; 1 U {uz} and Y; «+ Y, 4
else
L X, X, 1and Y; < Y, \ {’U;l}

return X,, (which is equal to Y,,).

Theorem 3 The above algorithm is a %-approximation for unconstrained submodular mazximization.

Before proving the theorem, we need some lemmas:

Lemma 4 For every 1 <i<mn, a; +b; > 0.
Proof Notice that for all i, we have X;_1 C Y;_; and also u; € Y;_1. Thus, we have:

(Xim1 U{ui}) N (Vi \{us}) = Xia
(Xim1 U{ui}) U (Yier \ {wi}) =iy

We now apply submodularity:

a; +b; = f(Xio1 U{u}) — f(Xior) + f(Yier \ {wi}) — f(Yiz)
= f(Xim1 U{w}) + f(Yier \{ui}) = [f(Xim1) + f(Yio)]

>0.

Let OPT be the optimal solution of the problem, and define:
OPT; = (OPTUX;)NY;.

Then, note that OPT; is obtained from OPT by adding all of the elements added to X; by the algorithm
and removing all of the elements removed from Y; by the algorithm. The idea of this definition is that we
transform OPT into a set that agrees with what the algorithm has already done. We show the following.

Lemma 5 At each step i:
[f(X) + f(Y9)] = [f(Xiz1) + f(Yio1)] = f(OPT;—1) — f(OPT;)

Proof We prove the lemma in the case that a; > b;. The other case is similar. In this case, by Lemma
4 we must have a; > 0. The algorithm sets X; = X;_1 U {u;}, and Y; = Y;_1, so the left-hand side of
the inequality is just f(u;|X;—1) = a; > 0. We also have OPT; = OPT;_1 U {u;}. If u; € OPT, then
we have OPT; = OPT;_1, so the right-hand side is 0 and we are done. Suppose that u; ¢ OPT. Then,
note that OPT;_1 C Y;_1 \ {u;}. Thus, by submodularity:

fOPT;) — f(OPT;—1) = f(u; |OPTi—1) > f(u; | (Yie1 \ {usi}))
= f(Yic1) = f(Yics \{ui}) = —b; = —as.
multiplying by —1 then gives
J(OPT;_,) — f(OPT;) < a;.

as required. l

Now we have everything we need to prove Theorem 3. Initially we have OPTy = OPT and at the
end we have OPT, = X,, = Y,,. Intuitively Lemma 5 shows that each step our version OPT; of OPT
decrease in value, but this decrease is always matched by an increase in the value of either X; or Yj,
which should contribute the value of the solution we return. To make this formal, we sum the inequality
of Lemma 5 over i =1 to n:

n

D_If(OPTia) = FOPT)] < 3 [F(Xi) + F(Y) = f(Xima) = f(Yien)].

i=1
Simplifying, and using that f is non-negative we get:
f(OPTy) — f(OPT,) < f(Xn) + f(Ya) — f(Xo) = f(Y0) < f(Xn) + f(Ya).
Finally, since OPTy = OPT and OPT,, = X,, = Y,, we get:
fOPT) <3- f(X,).

3

Some Remarks

e In Section 1, we saw that the greedy algorithm gives a (1-1/e)-approximation algorithm for maxi-

mizing a monotone submodular function subject to a cardinality constraint. This result has been
generalized (via more complicated algorithm called continuous greedy) to achieve the same guar-
antee subject to any matroid constraint. The result appeared in

“Maximizing a Monotone Submodular Function Subject to a Matroid Constraint”, Gruia
Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak, STAM J. Comput, 40(6): 1740-
1766 (2011).

In Section 2, we considered the problem of maximizing a general (non-monotone) submodular
function. The best known (and tight) result is a randomized version of the algorithm we presented.
It achieves an approximation guarantee of 1/2. This result appeared in

“A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization”,
Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz, STAM J. Comput. 44(5):
1384-1402 (2015).

It is still an open problem to design tight algorithms for maximizing a non-monotone submodular
function subject to a matroid (or even cardinality) constraint.

