
Advanced Algorithms December 2, 2024

Lecture 20: Locality Sensitive Hashing
Notes by Ola Svensson1

Today we are going to cover a cool topic called locality-sensitive hashing with the useful application
of nearest neighbor search.
These notes are basically the lecture notes of Lecture 6 in Shayan Oveis Gharan’s course “CSE 521:

Design and Analysis of Algorithms I” available here:

http://courses.cs.washington.edu/courses/cse521/17wi/

We start with a reduction of the nearest neighbor search (NNS) problem to that of finding a locality
sensitive hashing function as invented in [IM98].

1 Introduction to the Nearest Neighbor Search Problem

The NNS problem is as follows: Suppose P ⊂ Rd is a set of n points. Given any q ∈ Rd find

min
p∈P

dist(p, q).

The distance here could be any arbitrary distance function; in this lecture we will talk more about ℓ1
or ℓ2 distances even though the machinery that we describe can be generalized to a variety of distance
functions. Some applications include: web search, document search, or clustering - these are all situations
in which knowing how “far” an object is from other objects tells us important information.
A naive solution would be to store all of the points and simply loop over all p ∈ P to find the

minimum distance. This takes O(n · d) time and space, which is not good. Ideally we would like to have
a query time that is sublinear in n; we may allow for a super-linear amount of memory to store the data
structure.
If d = 1 we could pre-process the points by sorting them and then finding the distance minimizing

point would simply reduce to binary searching for p in a list, and returning the closest of the two adjacent
elements in the list. This takes O(log n) query time and O(n) bits of memory.
Extending the pre-processing idea to higher dimensions d leads to what are known as k-d trees: here

the idea is to partition the space by using coordinate-aligned planes chosen appropriately for the data
at hand. Unfortunately k-d trees generally fail to beat the naive approach when d = Ω(log n). It turns
out that in all known approaches the size of the data structure (or the query-time) grows exponentially
in d.
The main underlying difficulty is the well-known facts in high dimensions, which is usually referred

to as the “curse of dimensionality”. Suppose we partition the space by a grid where each cell is a cube
of side length a. Then, a cube of side length a randomly positioned in the space intersects 2d many cells
of the grid. This phenomenon essentially implies that a NNS algorithm based on kd-trees takes time
O(2d) in expectation to look into all of the nearby cells of a query point to find the closes point.

2 Reducing to Approximate Nearest Neighbors Search

We now describe the idea of [IM98]. Firstly, instead of solving the exact problem we will look for
approximate solutions. That is instead of finding the closest point p to a query point q, we are happy
to find a point p ∈ P such that

dist(p, q) ≤ c ·min
s∈P

dist(s, q),

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.

1

where c > 1 is the approximation factor of in our algorithm. As we will see the memory and the query
time of our algorithm will be a function of c.
So, let us define the approximate NNS problem. For c > 1, r > 0, the ANNS(c, r) is defined as

follows: Given a set point of points P , construct a data structure such that for any query point q, if
there is a point p such that dist(p, q) ≤ r, it returns a point p′ such that

dist(p′, q) ≤ c · r.

It is not hard to see that we can give a c approximation to the nearest neighbor search problem using
the solution to ANNS(c, r). In fact, all we need to do is to guess minp∈P dist(p, q) up to a multiplicative
factor of 1± ϵ. By an appropriate scaling assume

diam(P) = max
p,p′∈P

dist(p, p′) ≤ 1

Also, suppose δ > 0 is the minimum possible distance for all pairs of points in our dataset. Roughly speak-
ing, 1/δ can represent the bit precision of the data points stored in our system. We solve ANNS(c(1−ϵ), r)
for the following values of r,

δ, (1 + ϵ)δ, (1 + ϵ)2δ, . . . , 1.

We report the minimal value of r for which we find a point at distance c(1 − ϵ) of q. This reduction
imposes an additional O(log 1

δ) overhead to the query time and the memory of our algorithm. This is
because we need to maintain a separate data structure for each possible value of r in the above sequence.

3 Locality Sensitive Hashing functions

From now on we only focus on the ANNS(c, r). The main interesting idea of [IM98] is a reduction from
this problem to the design of a locality sensitive hash (LSH) function. Roughly speaking, an LSH is a
hash function which is sensitive to distance. Ideally, we would like to have a hash function that maps
“close points” to the same value with a high probability and maps “far points” to different values. To
be more precise, if dist(p, q) ≤ r we want them to map to the same value, with a high probability, and
if dist(p, q) > c · r we want them to map to different values with a high probability. Let us give a formal
definition.
Let U be the universe that contains the points P . Examples of U are Rd and all binary vectors

{0, 1}d with d coordinates. Suppose we have a family a functions H = {h : U → Z} of maps from the
universe U to the set of integer Z; we say H is (r, c · r, p1, p2)-LSH if: for all p, q ∈ U :

dist(p, q) ⩽ r =⇒ P [h(p) = h(q)] ⩾ p1

dist(p, q) ⩾ c · r =⇒ P [h(p) = h(q)] ⩽ p2

where the probabilities are over h ∼ H. Ideally, we want to have p1 ≫ p2, but as we see this highly
depends on the magnitude of c. The main idea in the reduction of [IM98] is that even if p1 is slightly
larger than p2 it is possible to use many independently chosen functions from H to boost p1 to a number
close to 1 and p2 to 1/n.
Before describing the reduction, let us give an example of LSH for binary vectors. We will see more

examples in the exercise session and homework. Suppose P ⊆ {0, 1}d with Manhattan distance function

dist(p, q) = ∥p− q∥1,

i.e., dist(p, q) is the number of coordinates at which p and q have different bits. Consider the family
H := {hi}di=1 where

hi(p) = pi

2

is the ith bit of p. Then observe that for each p, q ∈ {0, 1}d

P [h(p) = h(q)] =
bits in common
total bits

=
d− ∥p− q∥1

d
= 1− ∥p− q∥1

d
.

Therefore,

P [h(p) = h(q)] =

{
≥ 1− r

d ≈ e−r/d if dist(p, q) ≤ r

≤ 1− c·r
d ≈ e−c·r/d if dist(p, q) ≥ c · r

.

So, H is (r, c · r, e−r/d, e−c·r/d)-LSH.

4 Reduction to LSH

Now let us discuss the reduction from ANNS(c, r) to LSH. Well if we had a (r, c · r, p1, p2)-LSH family
such that p1 ≈ 1 and p2 ≈ 0 we could solve the problem as follows: We start by choosing a function
h ∼ H uniformly at random and we store h(p) for all points in P . Given a query point q, we compute
h(q) and see if there is any point p ∈ P where h(p) = h(q). Note that we can do the lookup in O(1)
time using a hash table as we discussed in previous lectures. Now, first consider a point p such that
dist(p, r) ≤ r. In that case we have h(p) = h(r) with probability p1 ≈ 1 and so the algorithm finds p.
On the other hand, any point p such that dist(p, r) > c · r satisfies h(p) = h(r) with probability p2 ≈ 0
and so we will have few (close to none) unwanted collisions.
Thus, at least intuitively, we only need to show that if we are given an (r, c · r, p1, p2)-LSH family

with the assumption p1 > p2, then we can boost it to get p1 ≈ 1 and p2 ≈ 0.
We do this boosting in two steps. First, we just try to make p2 small. To do this it suffices to take

k independent hash functions from H, and hash each point p ∈ P to a k-dimensional vector,

h(p) = [h1(p), . . . , hk(p)].

Then, by the independence of h1, . . . , hk, for any two points p, q,

dist(p, q) ⩾ c · r =⇒ P [h(p) = h(q)] ⩽ pk2 .

But this doesn’t help us increase p1. In fact, the above hash function maps two close points to the same
vector with probability at least pk1 . How do we do this? We choose ℓ independent copies of the above
k-dimensional hash function, f1, f2, . . . , fℓ, for a sufficiently large ℓ, with high probability there is an i
such that fi(p) = fi(q). Assume,

f1(p) = [h1,1(p), . . . , h1,k(p)]

...

fℓ(p) = [hℓ,1(p), . . . , hℓ,k(p)]

It follows that if dist(p, q) ≤ r, then

P [∃i | fi(p) = fi(q)] = 1− P [∀i, fi(p) ̸= fi(q)]

= 1− P [fi(p) ̸= fi(q)]
ℓ

⩾ 1− (1− pk1)
ℓ

The details of the algorithm is described in Algorithm 1.
Next, we describe how to tune the parameters k, ℓ. We choose k such that pk2 = 1/n. Also, assume

p1 = pρ2, (1)

3

for some ρ < 1. As we will see ρ is the main parameter that determines the running time/memory of
our algorithm. We choose ℓ ∝ nρ lnn.
Fix a query point q; it follows by linearity of expectation that for any i,

E [#p : dist(p, q) > c · r, fi(p) = fi(q)] ≤ n · pk2 ≤ 1.

Summing up over all i, in expectation there are O(ℓ) points in our data set which map to the same hash
value as q for some i. This implies an overhead of O(ℓ) in the query time.
On the other hand, if dist(p, q) ≤ r for some p ∈ P , then

P [∃i : fi(p) = fi(q)] ≥ 1− (1− pk1)
ℓ = 1− (1− pρk2)ℓ = 1− (1− n−ρ)ℓ ≈ 1− e−ℓn−ρ

= 1− 1/n.

In summary, for any point p at distance at most r, our algorithm outputs p with probability at least
1 − 1/n. The algorithm in expectation had O(ℓ · d) overhead to examine O(ℓ) points at distance more
than c · r from q.

Algorithm 1 LSH Algorithm
Preprocessing:
Choose k · ℓ, h1,1, . . . , hℓ,k functions uniformly at random from H.
Construct ℓ hash tables; for all 1 ≤ i ≤ ℓ store fi(p) = (hi,1(p), . . . , hi,k(p)) for all p ∈ P in the i-th
hash table.
Query(q):
for i = 1 → ℓ do
Compute fi(q).
Go over all points p where fi(p) = fi(q). As soon as we find a point p with dist(p, q) ≤ c · r, return

and output p.
end for

We remark that, as we are only interested in solving the ANNS(c, r) problem (and not the problem
of finding all close points), the above algorithm stops after finding a single element of distance at most
c · r, i.e., after inspecting in expectation O(ℓ) elements in total.

5 Space and Time Complexity of the Reduction

The algorithm needs to maintain O(ℓ) hash tables. In each hash table we need to store n = |P | hash
values where each value is a k dimensional vector. So, the space complexity of the algorithm is

O(ℓ · n · k) = O(n1+ρ lnn
log n

log(1/p2)
) ,

since ℓ = O(nρ lnn) and k = O(logn
log(1/p2)

).
We now analyze the query time. For any query point q we need to spend O(ℓ · k) time to compute

fi(q) for all 1 ≤ i ≤ ℓ. For any candidate close point p we spend O(d) time to calculate dist(p, q). In
expectation we examineO(ℓ) far points that we do not want to output (points p such that dist(p, q) > c·r).
So, the total query time (for computing hash functions and inspecting O(ℓ) far points) is

O(ℓ · k + d · ℓ) = O(nρ ln(n)(
log n

log(1/p2)
+ d)).

Ignoring lower order terms, the algorithm runs with memory O(n1+ρ) and querytime O(nρ).

4

Let us calculate ρ for the binary vector example that we described at the beginning. Recall that ρ is
chosen such that pρ2 = p1, so

ρ =
ln 1

p1

ln 1
p2

=
r/d

c · r/d
=

1

c
.

For example, if c = 2, we need O(n1.5) to store hash tables and we have O(
√
n) query time. As we see

the query time (and memory) get significantly better as we increase c. In practice, we may tune the
parameter c based on the amount of resources available to us.
It has been a very active area of research to design the best of LSH functions for many metrics. In

the exercise session and homework, we design LSH functions for some distances.

5

	Introduction to the Nearest Neighbor Search Problem
	Reducing to Approximate Nearest Neighbors Search
	Locality Sensitive Hashing functions
	Reduction to LSH
	Space and Time Complexity of the Reduction

