Advanced Algorithms November 27th, 2024

Lecture 19: Streaming Algorithms (AMS F; estimator)
Notes by Ola Svenssorl]
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(These notes are based on [MW])

In this lecture we start by stating the streaming algorithm for distinct elements and then provide
the analysis (last lecture notes). We then see a classic streaming algorithm by Alon, Matias, and
Szegedy [AMS] for estimating the ¢5 norm of the frequency vector. Recall the streaming setting that
we consider:

e The input is a long stream o = (a1, as, ..., a,) consisting of m elements where each element takes
a value from the universe [n] = {1,...,n}.

e Our central goal is to process the input stream (going from left to right) using a small amount
of space s, i.e., to use s bits of random-access memory while calculating (approximately) some
interesting function/statistics ¢(o).

In this lecture, we are again interested in calculating statistics based on the frequency vector vector
f = (f1,..., fn) of the stream, where f; = [{j : a; = i}| is the number of elements of value i. Note that
fi+ fo+ -+ fmn = m. In particular, we want to estimate the second moment

Fy=> f7.
i=1

1 Naive attempt: downsampling

Since we are dealing with a “big data” problem, we may first downsample the input into a smaller length,
then we calculate the second moment of the down sample and we use it to estimate the second moment
of the original input. Consider the following set of two inputs.

1,2,3,4,....n
1,1,...,1,2,2,...,2, ... .n/m,n/m,...,n/m,
—_— ——

m times m times m times

where m = Q(y/n). Observe that any downsample of the first sequence gives completely distinct numbers,
and any downsample of the second sequence of size O(y/n) also gives almost distinct numbers with a high
probability. So, any streaming algorithm that is based on downsampling sees almost the same thing,
i.e., completely distinct elements, in both cases. However, the second moment of the first sequence is n
and the second moment of the second one is O(n®/?), so we don’t expect a streaming algorithm based
on downsampling to size at most O(y/n) obtain an estimate better than y/n of the true second moment.

2 AMS Sketch

Let us first define k-wise independent family of hash functions.

Definition 1 A family of hash functions H = {h : [n] — U} is a k-wise independent if for any k distinct
elements (z1,--- ,x1) € U¥ and any numbers (u1,--- ,uy), we have:
L)k.
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Initialization:
(1) Pick a 4-wise independent hash function: h: [n] — {—1,+1}
(2) Let o; = h(i) so o € {—1,1}"
(3) Let Z =0.

Process element of value i: Z = 7 + o;

Output: 72

Note that at the end of the algorithm we have that Z = Y " | f;0;. As for distinct elements, it is
crucial to bound the expected value and variance of Z?2 in the above algorithm. We start by proving
that it is an unbiased estimator.

Claim 2
E[Z%] = ||fl3
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Next we bound the variance of the output (to later be apply to apply Chebychev’s Inequality).

Claim 3
Var{Z?] < 2||fl[3

Proof Recall that, one can compute the variance of a random variable using the following formula:
Var[Z?] = E[Z*] — (E[Z?%))%.
Therefore, let us first compute E[Z4].
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Let us consider several types of terms:

e all the indexes are equal i =j =k =1:

Zie[n] oifi = Zie[n] fi

e the indexes are matched 2 by 2:
(;l) Zi<j(‘7i‘7jfifj)2 = 62i<j fzsz



e terms with a single (unmatched) multiplier: in this case, since the value E[o;] = 0 for any 1 <
i < n, then the coefficient of such terms are zero. (Here we use that our hash function is 4-wise
independent.)

Therefore, E[Z%] = 37,1 fit + 632, f2f7. So the variance of Z? is :
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We have E[Z2] = ||f||3 and Var[Z?] < 2||f||3. Now we improve the precision of the estimate by

repeating the algorithm for a sufficient number of times (independently) and using the average as an
estimate.

(1) For t = 6%, maintain ¢ i.i.d copies of the above algorithm. Let ZZ,Z3---Z? be the output of
these copies.

(2) Let 22=1%""_ 72

(3) Output Z2.

By linearity of expectation, we have E[Z 2] = ||fl|3. However, the variance becomes smaller. In par-

Var(Z?)
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ticular, the variance of the estimate is now < %||f|\‘2l By Chebyshev’s inequality we get
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3 AMS sketch and the Johnson-Lindenstrauss lemma

We just constructed an algorithm for approximating the Ls norm of a vector x € R"™ using the AMS
sketch, given a stream of updates to entries of . We generated a random matrix A € R™*™ by
independently and uniformly sampling each entry A;; from {1, —1}. We then proved that Ve > 0, if the
dimension m = O(%), then Vo € R™:

Wl
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This implies that with probability at least 2, (1 — ¢) [|z||, < H \FA.%‘H < (1+¢€) x|, — this follows
because forany 0 <e<1,v/1+e<l+eand Vv1—e>1—¢.

3.1 Sketch using a Gaussian distribution

We consider another sketch A € R™*™, where V1 < i,j < n, A;; ~ N(0,1). Examining the conditions
imposed on the A’s coefficients in the last lecture, we notice that both still hold:

1. E[AkiAg;] =0, Vi # j, 1 < k < m because the variables are independent.
E[A?]=1,V1<i<m,1<k<n by definition.

The new sketch has an additional property: 1 <i <n, (Az); = X7, Ajjz; ~ N(0, | #]|2). This is
known as the 2-stability of the Gaussian distribution.
Most importantly, it is possible to prove a strong Chernoff-type concentration inequality for ||Az||s.

Specifically, \|Ax||§ = Z( r)? = Z v2, yi ~ N(0, ||x|| ) follows a x? with m degrees of freedom. The

following bound holds for this dlstrlbutlon
Pr [| ||A33||§ —m Hx||§ ’ > em Hx||§} < e 9™ for a constant C' > 0

3.2 Johnson - Lindenstrauss lemma

Lemma 4 For any e € (0,1), Vay,- -+ ,z, € R?, there exists M € R™ 4 with m = O(% logn) such
that for all 1 <4,j < n:

(=) llzi = 2jlly < [[Mz; — Mzjlly < (14 €) [l =z,

Remark This is a statement about dimensionality reduction. The dimension to which the R? vectors
are reduced, m, does not depend on d, only on the number of vectors.

Proof Fix two indices i # j and let y*/ = z; —x; and M = \/»A, where A € R™*" has i.i.d. elements
sampled from A(0,1). By the previous result and setting m = cez logn :
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Next, by taking the union bound:
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Therefore PrVi # j, | | Mx; — Ma:J||§ — | — x]||§ | <ellw; — J:J||§ > 1— 5. The probability is taken
w.r.t the law of M, which allows us to conclude the existence of at least one matrix M satisfying the
desired inequality. H

Remark The bound for m is optimal, as proved by a very recent result Larsen-Nelson’16.
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