
Advanced Algorithms November 16, 2024

Lecture 18: Distinct Elements Continued
Notes by Ola Svensson1

1 Estimating the Number of Distinct Elements

DISTINCT-ELEMENTS problem Our goal is to output an approximation to then number d(σ) =
|{j : fj > 0}| of distinct elements that appear in the stream σ.

It is provably impossible to solve this problem in sublinear space if one is restricted to either deter-
ministic algorithms or exact algorithms. Thus we shall seek a randomized approximation algorithms.
More specifically, we give a guarantee of the following type

Pr[d(σ)/3 ≤ A(σ) ≤ 3d(σ)] ≥ 1− δ,

i.e., with probability 1− δ we have a 3-approximate solution. (With more work the 3 can be improved
to 1 + ε for any ε > 0.) The amount of space we use will be O(log(1/δ) log n).

Recall that we use the zeros(p) function: for an integer p > 0 let zeros(p) denote the number of
zeros that the binary representation of p ends with. Formally,

zeros(p) = max{i : 2i divides p}.

Examples are zeros(2) = 1, zeros(3) = 0, zeros(4) = 2, zeros(6) = 1, zeros(7) = 0.
The algorithm is

Initialization: Choose a random hash function h : [n]→ [n] from a pairwise independent family2. Let
z = 0.

Process j: If zeros(h(j)) > z then z = zeros(h(j)).

Output: 2z+1/2.

We only use O(log n) space. The intuition for correctness is very simple:

• The probability that a random number x has zeros(x) ≥ log d is 1/d.

• So if we have d distinct numbers we would expect zeros(h(j)) ≥ log d for some element j.

Let’s now analyze the quality of the output.

1.1 Analysis of Algorithm

• For each j ∈ [n] and each integer r ≥ 0, let Xr,j be an indicator random variable for the event
“zeros(h(j)) ≥ r,” and let Yr =

∑
j:fj>0Xr,j .

• Let t denote the value of z when algorithm terminates. By definition,

Yr > 0⇐⇒ t ≥ r. (1)
1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain

inconsistent notation, typos, and omit citations of relevant works.
2To ease calculations we assume that n is a power of two and so we hash a value p to a uniformly at random binary

string of length log2(n).
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• It will be useful to restate this fact as follows:

Yr = 0⇐⇒ t ≤ r − 1. (2)

• Since h(j) is uniformly distributed over (log n)-bit strings, we have

E[Xr,j ] = Pr[zeros(h(j)) ≥ r] = Pr[2r divides h(j)] =
1

2r
.

We now estimate the expectation and variance of Yr. We have

E[Yr] =
∑

j:fj>0

E[Xr,j ] =
d

2r

and

Var[Yr] = E[Y 2
r ]− E[Yr]2

= E[
∑

j,j′:fj ,fj′>0

Xr,jXr,j′ ]−
∑

j,j′:fj ,fj′>0

E[Xr,j ]E[Xr,j′ ]

=
∑

j:fj>0

(
E[X2

r,j ]− E[Xr,j ]
2
)

≤
∑

j:fj>0

E[X2
r,j ] =

∑
j:fj>0

E[Xr,j ] =
d

2r

Here, we used the pairwise independence from the hash-functions in the third equality.
Then by using Markov’s inequality, we have

Pr[Yr > 0] = Pr[Yr ≥ 1] ≤ E[Yr]

1
=

d

2r
(3)

(Recall that Markov’s inequality says that for a non-negative random variable, we have Pr[Z ≥ k] ≤ E[Z]
k
.)

Also by using Chebyshev’s inequality, we have

Pr[Yr = 0] ≤ Pr

[
|Yr − E[Yr]| ≥ d

2r

]
≤ Var[Yr]

(d/2r)2
≤ 2r

d
. (4)

(Recall that Chebyshev’s inequality says that for a random variable Z, Pr[|Z − E[Z]| ≥ k] ≤ Var[Z]

k2 .)

• Let d̂ be the estimate of d that the algorithm outputs. Then d̂ = 2t+1/2.

• Let a be the smallest integer such that 2a+1/2 ≥ 3d. Using Equations (1) and (3),

Pr[d̂ ≥ 3d] = Pr[t ≥ a] = Pr[Ya > 0] ≤ d

2a
≤
√

2

3
.

• Similarly, let b the largest integer such that 2b+1/2 ≤ d/3. Using Equations (2) and (4),

Pr[d̂ ≤ d/3] = Pr[t ≤ b] = Pr[Yb+1 = 0] ≤ 2b+1

d
≤
√

2

3
.

These guarantees are pretty weak in two ways:

• First the estimate d̂ is not arbitrarily close to d (can be fixed but not today).

• Secondly, the failure bounds (on each side) are
√

2
3 ≈ 47% which is high. How can we fix this

problem? Clearly we could aim for a worse than 3-approximation and therefore obtain better
failure probabilities.

• But a better idea, that does not further degrade the quality of the estimate d̂, is to use a standard
“median trick” which is really useful to know and use.
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1.2 The Median Trick

• Imagine running k copies of this algorithm in parallel, using mutually independent random hash
functions, outputting the median of the k answers.

If this median exceeds 3d then k/2 of the individual answers must exceed 3d, whereas we only expect
≤ k

√
2

3 of them to exceed 3d. By a standard Chernoff bound, this event has a probability ≤ 2−Ω(k).
Similarly, the probability that the median is below d/3 is also 2−Ω(k).
Choosing k = Θ(log(1/δ)), we can make the sum of these two probabilities work out to at most δ.

This gives us a one-pass randomized streaming algorithm that computes an estimate d̂ of d such that

Pr[d̂ 6∈ [d/3, 3d]] ≤ δ.

What about the space requirement? The original algorithm requires O(log n) bits to store (and
compute) the hash function and O(log log n) bits to store z. Therefore, the space used by the final
algorithm is O(log(1/δ) log n).
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