Lecture 18: Distinct Elements Continued

Notes by Ola Svensson¹

1 Estimating the Number of Distinct Elements

DISTINCT-ELEMENTS problem Our goal is to output an approximation to then number $d(\sigma) = |\{j: f_j > 0\}|$ of distinct elements that appear in the stream σ .

It is provably impossible to solve this problem in sublinear space if one is restricted to either deterministic algorithms or exact algorithms. Thus we shall seek a randomized approximation algorithms. More specifically, we give a guarantee of the following type

$$\Pr[d(\sigma)/3 \le A(\sigma) \le 3d(\sigma)] \ge 1 - \delta$$
,

i.e., with probability $1 - \delta$ we have a 3-approximate solution. (With more work the 3 can be improved to $1 + \varepsilon$ for any $\varepsilon > 0$.) The amount of space we use will be $O(\log(1/\delta)\log n)$.

Recall that we use the zeros(p) function: for an integer p > 0 let zeros(p) denote the number of zeros that the binary representation of p ends with. Formally,

$$zeros(p) = \max\{i : 2^i \text{ divides } p\}.$$

Examples are zeros(2) = 1, zeros(3) = 0, zeros(4) = 2, zeros(6) = 1, zeros(7) = 0. The algorithm is

Initialization: Choose a random hash function $h:[n] \to [n]$ from a pairwise independent family². Let z=0.

Process j: If zeros(h(j)) > z then z = zeros(h(j)).

Output: $2^{z+1/2}$.

We only use $O(\log n)$ space. The intuition for correctness is very simple:

- The probability that a random number x has $zeros(x) \ge \log d$ is 1/d.
- So if we have d distinct numbers we would expect $zeros(h(j)) \ge \log d$ for some element j.

Let's now analyze the quality of the output.

1.1 Analysis of Algorithm

- For each $j \in [n]$ and each integer $r \geq 0$, let $X_{r,j}$ be an indicator random variable for the event " $zeros(h(j)) \geq r$," and let $Y_r = \sum_{j:f_j>0} X_{r,j}$.
- Let t denote the value of z when algorithm terminates. By definition,

$$Y_r > 0 \Longleftrightarrow t \ge r. \tag{1}$$

¹Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain inconsistent notation, typos, and omit citations of relevant works.

²To ease calculations we assume that n is a power of two and so we hash a value p to a uniformly at random binary string of length $\log_2(n)$.

• It will be useful to restate this fact as follows:

$$Y_r = 0 \Longleftrightarrow t \le r - 1. \tag{2}$$

• Since h(j) is uniformly distributed over $(\log n)$ -bit strings, we have

$$\mathbb{E}[X_{r,j}] = \Pr[zeros(h(j)) \ge r] = \Pr[2^r \text{ divides } h(j)] = \frac{1}{2^r}.$$

We now estimate the expectation and variance of Y_r . We have

$$\mathbb{E}[Y_r] = \sum_{j:f_i>0} \mathbb{E}[X_{r,j}] = \frac{d}{2^r}$$

and

$$\begin{aligned} \operatorname{Var}[Y_r] &= \mathbb{E}[Y_r^2] - \mathbb{E}[Y_r]^2 \\ &= \mathbb{E}[\sum_{j,j':f_j,f_{j'}>0} X_{r,j} X_{r,j'}] - \sum_{j,j':f_j,f_{j'}>0} \mathbb{E}[X_{r,j}] \, \mathbb{E}[X_{r,j'}] \\ &= \sum_{j:f_j>0} \left(\mathbb{E}[X_{r,j}^2] - \mathbb{E}[X_{r,j}]^2 \right) \\ &\leq \sum_{j:f_j>0} \mathbb{E}[X_{r,j}^2] = \sum_{j:f_j>0} \mathbb{E}[X_{r,j}] = \frac{d}{2^r} \end{aligned}$$

Here, we used the pairwise independence from the hash-functions in the third equality. Then by using Markov's inequality, we have

$$\Pr[Y_r > 0] = \Pr[Y_r \ge 1] \le \frac{\mathbb{E}[Y_r]}{1} = \frac{d}{2r}$$
 (3)

(Recall that Markov's inequality says that for a non-negative random variable, we have $\Pr[Z \ge k] \le \frac{\mathbb{E}[Z]}{k}$.) Also by using Chebyshev's inequality, we have

$$\Pr[Y_r = 0] \le \Pr\left[|Y_r - \mathbb{E}[Y_r]| \ge \frac{d}{2^r}\right] \le \frac{\operatorname{Var}[Y_r]}{(d/2^r)^2} \le \frac{2^r}{d}.$$
(4)

(Recall that Chebyshev's inequality says that for a random variable Z, $\Pr[|Z - \mathbb{E}[Z]| \ge k] \le \frac{\operatorname{Var}[Z]}{k^2}$.)

- Let \hat{d} be the estimate of d that the algorithm outputs. Then $\hat{d} = 2^{t+1/2}$.
- Let a be the smallest integer such that $2^{a+1/2} \ge 3d$. Using Equations (1) and (3),

$$\Pr[\hat{d} \ge 3d] = \Pr[t \ge a] = \Pr[Y_a > 0] \le \frac{d}{2^a} \le \frac{\sqrt{2}}{3}.$$

• Similarly, let b the largest integer such that $2^{b+1/2} \le d/3$. Using Equations (2) and (4),

$$\Pr[\hat{d} \le d/3] = \Pr[t \le b] = \Pr[Y_{b+1} = 0] \le \frac{2^{b+1}}{d} \le \frac{\sqrt{2}}{3}.$$

These guarantees are pretty weak in two ways:

- First the estimate \hat{d} is not arbitrarily close to d (can be fixed but not today).
- Secondly, the failure bounds (on each side) are $\frac{\sqrt{2}}{3} \approx 47\%$ which is high. How can we fix this problem? Clearly we could aim for a worse than 3-approximation and therefore obtain better failure probabilities.
- But a better idea, that does not further degrade the quality of the estimate \hat{d} , is to use a standard "median trick" which is really useful to know and use.

1.2 The Median Trick

• Imagine running k copies of this algorithm in parallel, using mutually independent random hash functions, outputting the median of the k answers.

If this median exceeds 3d then k/2 of the individual answers must exceed 3d, whereas we only expect $\leq k\frac{\sqrt{2}}{3}$ of them to exceed 3d. By a standard *Chernoff bound*, this event has a probability $\leq 2^{-\Omega(k)}$. Similarly, the probability that the median is below d/3 is also $2^{-\Omega(k)}$.

Choosing $k = \Theta(\log(1/\delta))$, we can make the sum of these two probabilities work out to at most δ . This gives us a one-pass randomized streaming algorithm that computes an estimate \hat{d} of d such that

$$\Pr[\hat{d} \notin [d/3, 3d]] \leq \delta.$$

What about the space requirement? The original algorithm requires $O(\log n)$ bits to store (and compute) the hash function and $O(\log\log n)$ bits to store z. Therefore, the space used by the final algorithm is $O(\log(1/\delta)\log n)$.