Advanced Algorithms November 19, 2024

Lecture 17: Finding Frequent Items, Distinct Elements
Notes by Ola Svenssorl]

1 Finding Frequent Items Deterministically

(This is the Google search query problem).

We have a stream o = (ay,...,an), with each a; € [n]. This implicitly defines a frequency vector
f = (f1,..., fn) (describing the number of times each query has been searched). Note that f; + fo +
ot fu=m,

MAJORITY problem: If exists j such that f; > m/2, then output j, otherwise, output “L”.

FREQUENT problem with parameter k: Output the set {j : f; > m/k}.

Unfortunately, both these problems requires space Q(min{m, n}) if we limit ourselves to deterministic
one-pass algorithms. However, we will see the Misra-Gries Algorithm’82 that solves the related problem
of estimating the frequencies f; and can also be used to solve the above problems in two passes.

1.1 The Misra-Gries Algorithm

The algorithms is a one-pass data stream algorithm. It consists of three sections.
e An initialization section, executed before we see the stream.
e A processing section, executed each time we see an element.
e An output section, where we answers question(s) about the stream.

The Misra-Gries Algorithm uses a parameter k that controls the quality of the answers it gives. It
can be described as follows:

Initialization: A < (empty associative array).

Process j:
1. If j € keys(A) then
2 Al =A[)+1
3. Else if |keys(A)| < k — 1 then
4. A =1
5. Else foreach ¢ € keys(A) do
6. All] = A[f) — 1 if A[¢] = 0 then remove ¢ from A.

Output: On query a, if a € keys(A), then report fo= Alal, else report fa=0.
Example 1 It is instructive to run the algorithm on the stream (1,1,2,2,4,4,1,4,4,1) with k = 3.

We now analyze the space requirement and solution quality of the algorithm.

IDisclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.

1.1.1 Space requirement of algorithm

We store at most k — 1 key/value pairs. Each key requires logn bits to store and each value at most
logm bits. Hence the amount of space we use is O(k(logn + logm)). So we are happy with the space
requirement of the algorithm.

1.1.2 Solution quality

e Let us pretend that A consists of n key/value pairs, with A[j] = 0 whenever j is not actually stored
in A by the algorithm.

e Notice that the counter A[j] is incremented only when we process an occurrence of j in the stream.
Thus

fj < fj-

e On the other hand, how often can we decrement the counters? Whenever A[j] is decremented (we
pretend that A[j] is incremented from 0 to 1, and then immediately decremented back to 0), we
also decrement k — 1 other counters.

e Since the stream consists of m elements, there can be at most m/k such decrements. Therefore

m

f] L fj'

IN

We summarize the facts about the Misra-Gries algorithm in the following theorem.
Theorem 1 The Misra-Gries algorithm with parameter k uses one pass and O(k(logm +1logn)) bits of
space, and provides, for any token j, an estimate f; satisfying

m

£ ksﬁgh

How can you use the Misra-Gries Algorithm to solve the FREQUENT problem with one additional
pass? If some token j has f; > m/k then its corresponding counter A[j] will be positive in the end of
the Misra-Gries Algorithm. Thus we can make a second pass over the input stream, counting exactly
the frequencies f; for all j € keys(A), and then output the desired set of items.

2 Estimating the Number of Distinct Elements
(This is the Facebook problem, i.e., the number of different cities on Facebook.)

DISTINCT-ELEMENTS problem Our goal is to output an approximation to then number d(c) =
{j : f; > 0}| of distinct elements that appear in the stream o.

It is provably impossible to solve this problem in sublinear space if one is restricted to either deter-
ministic algorithms or exact algorithms. Thus we shall seek a randomized approximation algorithms.
More specifically, we give a guarantee of the following type

Prld(0)/3 < A(0) < 3d(0)] = 1 -4,

i.e., with probability 1 — § we have a 3-approximate solution. (With more work the 3 can be improved
to 1+ ¢ for any € > 0.) The amount of space we use will be O(log(1/d)logn).

2.1 Ingredients
2.1.1 Pairwise independent hash family

A family H of functions of the type [n] — [n] is said to be a pairwise independent hash family if the
following property holds, with h € H picked uniformly at random:

for any x # 2’ € [n] and y,y’ € [n] we have

JPr (@) =y Ah(z') =y] = 1/n”.

Note that this implies that Prp[h(x) = y] = 1/n. For us the following fact will be important (which
follows from the construction in last lecture):

Lemma 2 There exists a pairwise independent hash family so that h can be sampled by picking O(logn)
random bits. Moreover, h(x) can be calculated in space O(logn).

2.1.2 The zero function

For an integer p > 0 let zeros(p) denote the number of zeros that the binary representation of p ends
with. Formally,

zeros(p) = max{i : 2° divides p}.
Examples are zeros(2) = 1, zeros(3) = 0, zeros(4) = 2, zeros(6) = 1, zeros(7) = 0.
2.2 The Algorithm
The basic intuition of the algorithm is as follows:
e The probability that a random number z has zeros(z) > logd is 1/d.
e So if we have d distinct numbers we would expect zeros(h(j)) > logd for some element j.
The algorithm is now very simple:

Initialization: Choose a random hash function A : [n] — [n] from a pairwise independent familyﬂ Let
z=0.

Process j: If zeros(h(j)) > z then z = zeros(h(j)).
Output: 2°+1/2,

We only use O(logn) space. Let’s now analyze the quality of the output.

2.3 Analysis of Algorithm

e For each j € [n] and each integer r > 0, let X, ; be an indicator random variable for the event
“zeros(h(j)) > r,” and let ¥, = Zj:fj>0 Xrj

e Let ¢t denote the value of z when algorithm terminates. By definition,

Y, >0 t>r (1)

2To ease calculations we assume that n is a power of two and so we hash a value p to a uniformly at random binary
string of length log,(n).

e It will be useful to restate this fact as follows:

Y, =0<=t<r—-1 (2)

In the next lecture we will compute the expectation and variance of Y,., and use these bounds to prove
that Y} is likely positive for r such that 2"t1/2 < d/3 and Y, is likely zero for 7 such that 2"+/2 > 3d.
This will establish the required approximation guarantee.

	Finding Frequent Items Deterministically
	The Misra-Gries Algorithm
	Space requirement of algorithm
	Solution quality

	Estimating the Number of Distinct Elements
	Ingredients
	Pairwise independent hash family
	The zero function

	The Algorithm
	Analysis of Algorithm

