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Lecture 17: Finding Frequent Items, Distinct Elements
Notes by Ola Svensson1

1 Finding Frequent Items Deterministically

(This is the Google search query problem).
We have a stream σ = 〈a1, . . . , am〉, with each ai ∈ [n]. This implicitly defines a frequency vector

f = (f1, . . . , fn) (describing the number of times each query has been searched). Note that f1 + f2 +
· · ·+ fn = m.

MAJORITY problem: If exists j such that fj > m/2, then output j, otherwise, output “⊥”.

FREQUENT problem with parameter k: Output the set {j : fj > m/k}.

Unfortunately, both these problems requires space Ω(min{m,n}) if we limit ourselves to deterministic
one-pass algorithms. However, we will see the Misra-Gries Algorithm’82 that solves the related problem
of estimating the frequencies fj and can also be used to solve the above problems in two passes.

1.1 The Misra-Gries Algorithm

The algorithms is a one-pass data stream algorithm. It consists of three sections.

• An initialization section, executed before we see the stream.

• A processing section, executed each time we see an element.

• An output section, where we answers question(s) about the stream.

The Misra-Gries Algorithm uses a parameter k that controls the quality of the answers it gives. It
can be described as follows:

Initialization: A← (empty associative array).

Process j:

1. If j ∈ keys(A) then

2. A[j] = A[j] + 1

3. Else if |keys(A)| < k − 1 then

4. A[j] = 1

5. Else foreach ` ∈ keys(A) do

6. A[`] = A[`]− 1 if A[`] = 0 then remove ` from A.

Output: On query a, if a ∈ keys(A), then report f̂a = A[a], else report f̂a = 0.

Example 1 It is instructive to run the algorithm on the stream 〈1, 1, 2, 2, 4, 4, 1, 4, 4, 1〉 with k = 3.

We now analyze the space requirement and solution quality of the algorithm.

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.
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1.1.1 Space requirement of algorithm

We store at most k − 1 key/value pairs. Each key requires log n bits to store and each value at most
logm bits. Hence the amount of space we use is O(k(log n + logm)). So we are happy with the space
requirement of the algorithm.

1.1.2 Solution quality

• Let us pretend that A consists of n key/value pairs, with A[j] = 0 whenever j is not actually stored
in A by the algorithm.

• Notice that the counter A[j] is incremented only when we process an occurrence of j in the stream.
Thus

f̂j ≤ fj .

• On the other hand, how often can we decrement the counters? Whenever A[j] is decremented (we
pretend that A[j] is incremented from 0 to 1, and then immediately decremented back to 0), we
also decrement k − 1 other counters.

• Since the stream consists of m elements, there can be at most m/k such decrements. Therefore

fj −
m

k
≤ f̂j .

We summarize the facts about the Misra-Gries algorithm in the following theorem.

Theorem 1 The Misra-Gries algorithm with parameter k uses one pass and O(k(logm+ log n)) bits of
space, and provides, for any token j, an estimate f̂j satisfying

fj −
m

k
≤ f̂j ≤ fj .

How can you use the Misra-Gries Algorithm to solve the FREQUENT problem with one additional
pass? If some token j has fj > m/k then its corresponding counter A[j] will be positive in the end of
the Misra-Gries Algorithm. Thus we can make a second pass over the input stream, counting exactly
the frequencies fj for all j ∈ keys(A), and then output the desired set of items.

2 Estimating the Number of Distinct Elements

(This is the Facebook problem, i.e., the number of different cities on Facebook.)

DISTINCT-ELEMENTS problem Our goal is to output an approximation to then number d(σ) =
|{j : fj > 0}| of distinct elements that appear in the stream σ.

It is provably impossible to solve this problem in sublinear space if one is restricted to either deter-
ministic algorithms or exact algorithms. Thus we shall seek a randomized approximation algorithms.
More specifically, we give a guarantee of the following type

Pr[d(σ)/3 ≤ A(σ) ≤ 3d(σ)] ≥ 1− δ,

i.e., with probability 1− δ we have a 3-approximate solution. (With more work the 3 can be improved
to 1 + ε for any ε > 0.) The amount of space we use will be O(log(1/δ) log n).
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2.1 Ingredients

2.1.1 Pairwise independent hash family

A family H of functions of the type [n] → [n] is said to be a pairwise independent hash family if the
following property holds, with h ∈ H picked uniformly at random:

for any x 6= x′ ∈ [n] and y, y′ ∈ [n] we have

Pr
h∼H

[h(x) = y ∧ h(x′) = y′] = 1/n2.

Note that this implies that Prh[h(x) = y] = 1/n. For us the following fact will be important (which
follows from the construction in last lecture):

Lemma 2 There exists a pairwise independent hash family so that h can be sampled by picking O(log n)
random bits. Moreover, h(x) can be calculated in space O(log n).

2.1.2 The zero function

For an integer p > 0 let zeros(p) denote the number of zeros that the binary representation of p ends
with. Formally,

zeros(p) = max{i : 2i divides p}.

Examples are zeros(2) = 1, zeros(3) = 0, zeros(4) = 2, zeros(6) = 1, zeros(7) = 0.

2.2 The Algorithm

The basic intuition of the algorithm is as follows:

• The probability that a random number x has zeros(x) ≥ log d is 1/d.

• So if we have d distinct numbers we would expect zeros(h(j)) ≥ log d for some element j.

The algorithm is now very simple:

Initialization: Choose a random hash function h : [n]→ [n] from a pairwise independent family2. Let
z = 0.

Process j: If zeros(h(j)) > z then z = zeros(h(j)).

Output: 2z+1/2.

We only use O(log n) space. Let’s now analyze the quality of the output.

2.3 Analysis of Algorithm

• For each j ∈ [n] and each integer r ≥ 0, let Xr,j be an indicator random variable for the event
“zeros(h(j)) ≥ r,” and let Yr =

∑
j:fj>0Xr,j .

• Let t denote the value of z when algorithm terminates. By definition,

Yr > 0⇐⇒ t ≥ r. (1)
2To ease calculations we assume that n is a power of two and so we hash a value p to a uniformly at random binary

string of length log2(n).
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• It will be useful to restate this fact as follows:

Yr = 0⇐⇒ t ≤ r − 1. (2)

In the next lecture we will compute the expectation and variance of Yr, and use these bounds to prove
that Yr is likely positive for r such that 2r+1/2 < d/3 and Yr+1 is likely zero for r such that 2r+1/2 > 3d.
This will establish the required approximation guarantee.
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