
Advanced Algorithms November 11, 2024

Lecture 14: Sampling and Concentration Inequalities
Notes by Ola Svensson1

These notes are based on the lecture notes of Lecture 2 in Shayan Oveis Gharan’s course “CSE 521:
Design and Analysis of Algorithms I” available here:

http://courses.cs.washington.edu/courses/cse521/17wi/

• In this lecture we analyze the task of polling by learning important concentration inequalities:
Markov’s inequality, Chebychev’s inequality, and Chernoff’s inequality.

Suppose there is an unknown distribution, D and we want to estimate the mean. A possible suggestion
is to draw independent samples

X1, X2, . . . , Xn

from D and return the empirical average,
1

n

n∑
i=1

Xi.

Laws of large number say that as n goes to infinity the empirical average converges to the mean. The
question we want to address in this lecture is “how large should n be” in order to get an ε-additive
approximation of the true expectation? As a real world application, we can use this idea to estimate the
people opinion in polling by asking only a few of the voters randomly: e.g. to estimate the percentage
of the students (you) that have started preparing for the midterm.

We start this lecture by a simple example: Suppose that the average salary in Switzerland is 6000
CHF/month. What fraction of the working population that receives at most 8000 CHF/month? It turns
out that always at least 1/4 of the workers receive at most 8000 CHF/month. In the worst case, 1

4 of
the workers receive 0 CHF/month, and 3

4 get 8000. We can justify this claim using Markov’s inequality.

1 Markov’s Inequality

Theorem 1 (Markov’s Inequality) Let X ≥ 0 be a random variable. Then for all k,

P [X ≥ k · E [X]] ≤ 1

k

equivalently:

P [X ≥ k] ≤ E [X]

k
.

So, in our salary example, X denotes the average salary, E [X] = 6000 and k = 4/3. The inequality says
at most 3/4 of the workers receive more than 8000 or at least 1/4 receive less than 8000.
Proof The proof is a simple one line argument,

E [X] =
∑
i

i · P [X = i] ≥
∑
i≥k

i · P [X = i] ≥
∑
i≥k

k · P [X = i] = k · P [X ≥ k]

So, P [X ≥ k] ≤ E [X] /k as desired.

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.
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Observe that in the above proof is tight, i.e., all inequalities are equalities, if the distribution of X
has only two points mass,

X =

{
0 w.p. 1− 1/k

k + ε w.p. 1/k
.

In other words, this example shows that if E [X] is the only information that we have about X, then
Markov’s inequality is the best bound we can prove on deviations from the expectation of X.

2 Chebyshev’s Inequality

Markov’s Inequality is the best bound you can have if all you know is the expectation. In its worst
case, the probability is very spread out. Chebyshev’s Inequality lets you say more if you know the
distribution’s variance.

Definition 2 (Variance) The variance of a random variable X is defined as

Var(X) = E
[
(X − EX)2

]
Let us prove an identity on Var(X).

Var(X) = E
[
(X − EX)2

]
= E

[
X2 − 2XE [x] + (E [X])2

]
= E

[
X2
]
+ (E [X])2 − 2(E [X])2

= E
[
X2
]
− E [X]

2

where we used linearity of expectation. Note that for any number X, (X − EX)2 ≥ 0. Therefore, for
any random variable X, Var(X) ≥ 0. So, by above identity we always have

E
[
X2
]
≥ E [X]

2
,

i.e., the 2nd moment is at least the 1st moment squared.

Theorem 3 (Chebyshev’s Inequality) For any random variable X,

P [|X − EX| > ε] ≤ Var(X)

ε2

or equivalently

P [|X − E [X] | > kσ] ≤ 1

k2

where σ =
√
Var(X) is the standard deviation of X.

The second inequality in theorem can be read that any random variable is within 3 standard deviation of
the expectation with probability 8/9 ≥ 88%. It turns out that Chebyshev’s inequality is just Markov’s
inequality applied to the variance R.V., Y = (X − E [X])2.
Proof Let Y := (X − EX)2 be a nonnegative random variable. So, by Markov’s inequality,

P
[
Y ≥ ε2

]
≤ E [Y ]

ε2

In other words,

P
[
|X − E [X] |2 ≥ ε2

]
≤ Var(X)

ε2
.

2



Taking square root of the both sides of the inequality gives,

P [|X − E [X] | ≥ ε] ≤ Var(X)

ε2

as desired

2.1 Polling

In this section we use Chebyshev’s inequality to answer the question that we raised at the beginning of
this lecture. Suppose there is an unknown distribution D with mean µ and we want to estimate µ using
independent samples of D,

X1, X2, . . . , Xn

First, observe that by linearity of expectation,

E

[
1

n

∑
i

Xi

]
= µ.

So, we want to use Chebyshev’s inequality to upper bound,

P
[∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε]
To use Chebyshev’s inequality, first we need to calculate the variance. Let X = X1+···+Xn

n be the
empirical average. We use the following lemma to bound the variance of X.

We say a set of random variables X1, X2, . . . , Xn are pairwise independent if for all 1 ≤ i, j ≤ n

E [XiXj ] = E [Xi]E [Xj ] .

Lemma 4 For any set of pairwise independent random variables X1, . . . , Xn

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn) .

Proof We can write,

Var(X1 + · · ·+Xn) = E
[
(X1 + · · ·+Xn)

2
]
− (EX1 + EX2 + · · ·+ EXn)

2

= E

∑
i,j

XiXj

−∑
i,j

E [Xi]E [Xj ]

=
∑

E
[
X2
i

]
− (E [Xi])

2

=

n∑
i=1

Var(Xi).

In the second to last equality we used pairwise independence.

Let’s go back to the polling example; recall X1, . . . , Xn are independent samples of D, so they are
pairwise independent, and by the above lemma,

Var(X) = Var

(
X1 + · · ·+Xn

n

)
=

1

n2
Var(X1 + · · ·+Xn) =

1

n2
(Var(X1) + · · ·+Var(Xn)) =

Var(D)

n
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Therefore, by Chebyshev’s inequality,

P [|X − µ| ≥ ε] ≤ Var(D)

nε2
(1)

Now, let’s continue on the polling example, suppose for all i,

Xi =

{
1 w.p. p
0 otherwise,

i.e., p fraction of the population would vote yes on the election, and we want to estimate p within ε
additive error. So, it all we need to do is to upper bound the variance of Xi, First, we calculate the
second moment, for all i,

E
[
X2
i

]
= 12 · p+ 02 · (1− p) = p.

Therefore,

Var(Xi) = E
[
X2
i

]
− E [Xi]

2
= p− p2 = p(1− p) ≤ 1

4
.

Therefore, by (1)

P
[∣∣∣∣∑iXi

n
− p
∣∣∣∣ ≥ ε] ≤ 1

4nε2

Suppose we choose 10, 000 individuals from the population randomly and we calculate the empirical
mean; by above inequality with probability 15/16 our estimate is within 2% of the true mean. Note
that the importance of this inequality is that the size of the sample is independent of the size of the
population. In general if we want to obtain an ε-additive error with probability 1− δ we need O(1/(δε2))
many samples.

We now move on to stronger concentration bounds, a.k.a., Chernoff bounds that can applied when
the random variables are mutually independent. We will see that for the same polling example it is
enough to use O( 1

ε2 log
1
δ ) samples to obtain an ε-additive approximation of the mean with probability

1− δ.

3 Chernoff bounds

Chernoff bounds is a family of strong concentration inequalities named after the mathematician Herman
Chernoff2. We start with some intuition before stating one of these inequalities formally. After that we
return to our polling example. Finally, we give the sketch of a proof of the inequality.

3.1 Law of Large Numbers

The Law of Large Numbers (LLN) is a theorem which states that the average of the results obtained
from a large number of independent trials of an experiment tends towards the expected value. Central
limit theorems state that for an infintie sequence of random independent variables X1, X2, . . . with mean
µ and unit variance.

√
n

(
1

n

n∑
i=1

Xi − µ

)
→ N (0, 1). (2)

as n goes to infinity. In this course, we are interested in quantitative forms of this convergence. We will
study this in the form of strong concentration bounds, a.k.a., Chernoff bounds.

2See http://math.mit.edu/˜goemans/18310S15/chernoff-notes.pdf that also form a basis of these notes. for more com-
prehensive notes of these bounds.
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Recall that Chebyshev’s inequality implies that for any random variable X,

P [|X − E [X] | ≥ kσ] ≤ 1

k2
(3)

Strong concentration bounds imply that ifX is an average of independent random variables with standard
deviation σ, and satisfy certain other properties, then

P [|X − EX| ≥ kσ] ≤ e−Ω(k2)

In other words, they give exponentially improved bounds compared to Chebyshev’s inequality. Note
that to get this strong bound we want X to be an average of mutually independent random variables;
so unlike Chebyshev’s inequality pairwise independent is not enough.

3.2 Formal statements

There are many different forms of Chernoff bounds, each tuned to slightly different assumptions. We will
start with the statement of the bound for the simple case of a sum of independent Bernoulli trials, i.e.,
the case in which each random variable only takes the values 0 or 1. For example, the polling application
is such an example.

Theorem 5 (Chernoff Bounds) Let X =
∑n
i=1Xi, where Xi = 1 with probability pi and Xi = 0 with

probability 1− pi, and all Xi are independent. Let µ = E [X] =
∑n
i=1 pi. Then

(i) Upper Tail: P [X ≥ (1 + δ)µ)] ≤ e−
δ2

2+δµ for all δ > 0;

(ii) Lower Tail: P [X ≤ (1− δ)µ)] ≤ e− δ2

2 µ for all δ > 0.

Notice that the lower and upper tail take slightly different forms. Curiously, this is necessary and boils
down to the use of different approximation of the logarithmic function.

Before returning to our polling example, let us mention this very useful Chernoff Bound (often called
Hoeffding’s Inequality).

Theorem 6 Let X1, X2, . . . , Xn be independent random variables such that a ≤ Xi ≤ b for all i. Let
X =

∑n
i=1Xi and set µ = E [X]. Then

(i) Upper Tail: P [X ≥ (1 + δ)µ)] ≤ e−
2δ2µ2

n(b−a)2 for all δ > 0;

(ii) Lower Tail: P [X ≤ (1− δ)µ)] ≤ e−
δ2µ2

n(b−a)2 for all δ > 0.

Notice, that the above tail bounds apply to bounded random variables, regardless of their distribution!

3.3 Application: Polling

Let us continue our polling example: Consider a set of n Bernoulli random variables X1, X2, . . . Xn where
for all i, Xi = 1 w.p. p and Xi = 0 w.p. 1− p. By Theorem 5,

P
[∣∣∣∣∑Xi

n
− p
∣∣∣∣ ≥ ε] = P

[∣∣∣∑Xi − pn
∣∣∣ ≥ nε]

≤ P
[∑

Xi ≥ (1 + ε/p)pn
]
+ P

[∑
Xi ≤ (1− ε/p)pn

]
≤ e− ε2n

3 + e−
ε2n
2
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So, if we want to estimate the probability p within an additive error ε with probability 1 − δ it is
enough to let

n = 3
ln(2/δ)

ε2
.

To give you a point of comparison, recall that we showed that using Chebyshev inequality, to estimate
p with additive error of ε with probability at 1 − δ we need about δ/ε2. So, for example, if we want
1 − 2−100 probability of success the Chernoff bound implies we only need about 100/ε2 many samples,
whereas Chebyshev’s inequality says we want 2100/ε2 many samples. You can see that Chernoff bounds
implies a significantly smaller number of samples.

Upshot: The failure probability decreases exponentially with respect to the number of samples whereas
the confidence interval ε only decreases proportional to the square-root of the number of samples.

3.4 Proof sketch of Theorem 5

We show how to prove the upper tail bound. The proof for the lower tail is analogous. Perhaps
surprisingly, we again resort to Markov’s inequality (similar to the proof of Chebychev’s inequality,
however, here the calculations become a little more involved). For any s > 0,

P [X ≥ a] = P
[
esX ≥ esa

]
≤

E
[
esX

]
esa

(by Markov’s inequality).

We now analyze the numerator. By the independence of the random variables X1, . . . , Xn

E
[
esX

]
= E

[
es(X1+X2+···+Xn)

]
=

n∏
i=1

E
[
esXi

]

Now using that Xi is a Bernoulli random variable that takes value 1 with probability pi:

n∏
i=1

E
[
esXi

]
=

n∏
i=1

(pi · es + (1− pi) · 1)

=

n∏
i=1

1 + pi(e
s − 1)

≤
n∏
i=1

epi(e
s−1) (using that 1 + y ≤ ey with y = p(es − 1))

= eµ(es−1)

Now setting a = (1 + δ)µ and s = ln(1 + δ) we get3

P [X ≥ a] ≤ eµδ

(1 + δ)µ(1+δ)
=

(
eδ

(1 + δ)1+δ

)µ
,

which can be simplified to be at most e−
δ2

2+δµ.

3Our choice of s is motivated as follows: we are trying to make our upper bound for the tail probability to be as small
as possible. To do this, we can minimize our expression for the upper bound as a function of s.
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The lower tail follows by similar calculations: For any s > 0,

P [X ≤ a] = P
[
e−sX ≥ e−sa

]
≤

E
[
e−sX

]
e−sa

(by Markov’s inequality).

Now same simplifications follow and at the end we choose a = (1− δ)µ and s = − ln(1− δ).
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