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Midterm Exam, CS-450: Algorithms 11, 2024-2025

Do not turn the page before the start of the exam. This document is double-sided
and has 8 pages.

e You are only allowed to have an A4 page written on both sides.
e Communication, calculators, cell phones, computers, etc... are not allowed.

e The exam consists of two parts. The first part consists of multiple-choice questions (Prob-
lem 1), the second part consists of three open-ended questions (Problems 2, 3, 4).

e For the open-ended questions, your explanations should be clear enough and in sufficient
detail that a fellow student can understand them. In particular, do not only give pseu-
docode without explanations. A good guideline is that a description of an algorithm should
be such that a fellow student can easily implement the algorithm following the description.

e You are allowed to refer to material covered in the lectures including algorithms and the-
orems (without reproving them). You are however not allowed to simply refer to material
covered in exercises.

Good luck!
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Problem 1: Multiple Choice Questions (39 points)

For each question, select the correct alternative. Each question has exactly one correct answer.
Wrong answers are not penalized with negative points.

la. Matroids (13 points). Let n > 2, and consider the ground set £ = [n]. Which of the

following is not a matroid?
A M=(EIforI={XCE:|X|<F%
B. for 7 ={0,{1}}

D. forT={XCFE:1¢ X}
Solution. Answer: C.

A. is an example of a k-uniform matroid

o a =

100

= (
M = (E,7)
C.M=(FEIDforI={0U{XCFE:1€X}
M = (E,7)

is a matroid (it is straightforward to check that the two axioms hold).
is not a matroid: the first axiom fails, because {1,2} € Z, {2} C {1,2}, but {2} ¢ Z.

is a matroid: If Y € Z and X C Y, then 1 ¢ X, so X € Z, so the first axiom holds. To

check the second axiom: Suppose X,Y € 7 and | X| < |Y|. Pickany ¢ € Y\ X. Theni # 1

(since i €Y),s0 X U{i} € Z.

O

1b. Duality (18 points). What is the Dual of the following Linear Program:

Minimize
Subject to

Maximize
Subject to

Maximize
Subject to
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T1 + 222

5x1 + a9 > 2

201 +x2 > 1
4xe < 10

1,72 > 0

2y1 +y2 — 10y3
Sy1 +2y2 <1
Y1+ y2 —4ys < 2
Y1,Y2,y3 > 0

2y1 + y2 + 10y3
oY1 + 2y2 <1
y1+y2 +4ys <2
Y1,y2,y3 > 0
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Maximize 2y1 + y2 + 10y3
Subject to Y1 + 2y2 > 2
y1+y2 +4ys > 1
Y1,92,y3 2 0

D. None of the above

Solution. The primal can be rewritten in the standard form

Minimize T1 + 2x9
Subject to 5x1 + 10 > 2
201 22 >1
—4x9 > —10
x1,x9 >0
so the correct solution is A:
Maximize 2y1 + y2 — 10y3
Subject to 5y1 +2y2 <1
y1+y2 —4ys <2
Y1,y2,y3 2 0

lc. Maximum Bipartite Matching (13 points). Consider a graph G = (V, E') that is bipar-
tite, i.e. the vertices V are partitioned into the two disjoint sets A and B such that every edge
is between a vertex in A and a vertex in B. Moreover, the graph G is d-regular, i.e. every vertex
has degree d, with d > 0. What is the size of the minimum vertex cover in the graph?

A d-|A|
B. 1.|B|

C.

Al
D. |A|+|B|

Solution. First, for any subset S C A, the number of edges incident to S is d-|S|. The neighbors
of S in B, denoted N(S), must also have d - |[N(S)| edges. Since each edge incident to S is also
incident to N(S), we have d - |S| < d-|N(S)|, implying |S| < |N(S)|. By Hall’s theorem, this
guarantees a perfect matching of size min(|A|, |B|). Since the graph is regular, d- |A| = d - |B|,
so |A| = |B|. Finally, by Konig’s theorem, the size of the minimum vertex cover equals the size
of the maximum matching, which is |A]. O
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Problem 2: Knapsack polytope extreme points (20 points)

In the Fractional Knapsack problem, we are given n items, each having a value vy, ..., v, and
a weight wy, ..., wy,, along with a maximum capacity C. Our goal is to pick fractions of these
items, so as to maximize their total value, subject to the constraint that the selected fractions
have a total weight of at most C'. This problem is captured by the following linear program:

n
Maximize Z V5
i=1
n
Subject to: Zwixi <C
i=1
0<z; <1 Vie{l,...,n}

where each variable x; corresponds to the fraction of i-th item in our solution.

Your task is to prove that all extreme points of the feasible region, defined by the above con-
straints, have at least n — 1 integral coordinates. In other words, you should prove that, for any
extreme point solution z*, we have [{i | 0 < z} < 1}| < 1.

Solution. Let x be an extreme point of the above polytope and suppose that it has at most
n — 2 integral coordinates. Let i and j be two of its fractional coordinates, that is 0 < z;, z; < 1.

Choose any € such that 0 < € < min(wy(1 — x¢), wexy : V¢ € {i,7}). Notice that, due to z; and
xj being fractional, such an e exists. Using our choice, we construct the following solutions to
the linear program.

y=qxitg ifl=i

mj—wij ifEZj
z = xi—wii if =1
xj—i-wij ifl=j

Observe that both solutions are feasible since all of their coordinates have values in [0, 1] and
they also satisfy the capacity constraint since

n n n
g wiY; = E wiz; = E wiz; < C.
i—1 =1 i—1

We finish the proof by noticing that @ can be written as
1 n 1
T == —z
2¥ T 9%

which contradicts the fact that @ is an extreme point of the polytope.
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Problem 3: Matching on general graphs (21 points)

In class you have seen the following linear program to solve maximum weight matching on
bipartite graphs:
Maximize Za:ewe

eck

Subject to Z e <1 YveV (1)
e€d(v)
xe >0 Vee E

Here, we use d(v) to be the set of edges incident to vertex v, formally, 6(v) = {e € E: v € e}.
In this problem you are supposed to prove that the integrality gap of this linear program
on general graphs is 3/2. In the case of a maximization problem the integrality gap ¢ is defined
as
OPTrp(I)

g = max

1er OPT(I)

where Z is the set of all problem instances.

3a (8 points). Show that the integrality gap ¢ is at least 3/2.

3b (13 points). Show that the integrality gap g is at most 3/2. You are allowed to use the
following fact without proof. The extreme points of the following linear program are integral.

Maximize Z TeWe
ecE
Subject to Z T.<1 YoeV
e€d(v)
(2)

» ae < |S|2_1 ¥S C V,|S| is odd

eckE,
eCS
Te >0 Vee E

Hint: Let x be a solution to the linear program (1). Analyze a scaled version of x using (2).

Solution. 3a. Consider the following example:

Here, the solution that sets x. = 1/2 for every edge e has value 3/2, but any integral matching
has only value 1.
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3b. Consider the optimal solution = to the first linear program. The point %x is feasible for the
second linear program. Indeed,

S| |S|—1
chﬁ ZZ%—?_T.

eck, veES e€d(v
eQS

CO\[\D
[\D\H

Here, we used the degree constraint from LP (1). Note that %x achieves the weight
2
§ Z TelWe.
eck

Since the second linear program is integral, we know that there exists an integral matching with
weight at least the weight of %az In particular, for any instance I,

OPTrp(I) < Y ccE TeWe
OPT(I) — 5D eck TeWe

3
-
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Problem 4: Pizzeria (20 points)

Your friend is building an online ordering platform for their pizzeria. Every evening, when the
pizzeria opens at 18h00, the situation is the following.

e There are n pizzas requested.
e Each pizza i € [n] has a requested pick-up time ¢; which is either 19h00, 20h00, 21h00.
e Each pizza i € [n] can give a profit p;.

e There are 3 different kinds of pizza dough (regular, gluten free, whole grain). Each pizza
i € [n] is requested to be made with one of these dough types, i.e. the set of pizzas [n] can
be partitioned into three sets R, G, W C [n].

Design a polynomial time algorithm that:
e takes as input n, (¢i)ic[n]; (Pi)ien), B, G, W as described above, and two integers d, h > 0.

e outputs a subset S C [n] of pizzas such that the profit ), ¢ p; is maximized, subject to
the following constraints:

(1) for each of the three types of dough R, G, W, there is only enough dough to make d
pizzas from it, so S can contain at most d pizzas of each type;
(2) it is possible to prepare all the pizzas in S so that
— each pizza i € S is ready before its pick-up time ¢;, and
— at most h pizzas are prepared during each hour 18h00-18h59, 19h00-19h59,
20h00-20h59.

One can encode each of the constraints (1) and (2) via a matroid. You are allowed to use the
following fact without proof. Remember that a family F of subsets of the ground set [n] is called
laminar if for all distinct X,Y € F, either XNY =0, or X CY,or Y C X. For a laminar family
F and any set of positive integers {kx }xer, one has that M = ([n],Z) is a matroid, where

I=A{T C[n]:|TNX|<kx for every X € F}.

Example. Let us say we have n = 30 pizzas, and let d =7 and h = 3. Suppose that 10 of the
pizzas have t; =19h00, 10 have t; =20h00, and 10 have t; =21h00.

e Let Sy be a set consisting of T pizzas with t; =21h00. Then Si satisfies constraint (2).

o Let Sy be a set consisting of 1 pizza with t; =19h00, 4 pizzas with t; =20h00, and 2 pizzas
with t; =21h00. Then Sy satisfies constraint (2).

o Let S5 be a set consisting of 1 pizza with t; =19h00 and 6 pizzas with t; =20h00. Then Ss
does not satisfy constraint (2).

Note that each of S1,S2,S3 contains at most 7 pizzas. Hence, constraint (1) is satisfied by each
of them, no matter what R,G,W are.

Solution. The problem can be solved by defining two matroids M; = ([n],Z;) and My =
([n],Z2) and finding the maximum weight independent set in their intersection. The matroid
M is meant to capture constraint (1) above, while My is meant to capture constraint (2).
More precisely:
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1. Let
I ={SCn]:|SNR|<d, |SNG| <d,|SNW|<d}.

Since R,G, W partition [n], we have that ([n],Z;) is a partition matroid. By virtue of
intersecting with this matroid, there will be enough dough to make each type of pizza in
our output solution S C [n].

2. Define
T = {Z S [n] it = 19h00},
Ty = {i € [n] : t; = 20h00} ,
T3 = {i € [n] : t; = 21h00},
X1:{i€[n]:i€T1},
Xo={i€n]:ieTi1UTL},
X3:{i€ [TL] :i€T1UT2UT3},

and let

T,={SCn]:Vje{1,2,3},|SNX;| <h-j}.

First observe that { X1, X2, X3} is a laminar family because X; C Xy C X3. Then ([n],Z2)
is a (laminar) matroid. By virtue of intersecting with this matroid, we are guaranteed that
each pizza i € S can be prepared within its pick-up time ¢; while only preparing h pizzas
per hour. In particular, we will start preparing the pizzas with the following priority: first
the pizzas in SNT7, then the pizzas in SNT5 and last the pizzas in S NT5. We will always
prepare exactly h pizzas each hour unless all the pizzas are already prepared. Assume for
contradiction that there is a pizza i € S N7} that does not meet its pick-up time. That
means that there are more than h - j pizzas with higher or equal priority than ¢ in S. This
is a contradiction to the constraint that [S N X;| < h-j.

O
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