
Midterm Exam, CS-450: Algorithms II, 2024-2025
Do not turn the page before the start of the exam. This document is double-sided
and has 8 pages.

• You are only allowed to have an A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• The exam consists of two parts. The first part consists of multiple-choice questions (Prob-
lem 1), the second part consists of three open-ended questions (Problems 2, 3, 4).

• For the open-ended questions, your explanations should be clear enough and in sufficient
detail that a fellow student can understand them. In particular, do not only give pseu-
docode without explanations. A good guideline is that a description of an algorithm should
be such that a fellow student can easily implement the algorithm following the description.

• You are allowed to refer to material covered in the lectures including algorithms and the-
orems (without reproving them). You are however not allowed to simply refer to material
covered in exercises.

Good luck!

Page 1 (of 8)

CS-450 Algorithms II • Fall 2024-2025
Michael Kapralov & Ola Svensson

Problem 1: Multiple Choice Questions (39 points)

For each question, select the correct alternative. Each question has exactly one correct answer.
Wrong answers are not penalized with negative points.

1a. Matroids (13 points). Let n ≥ 2, and consider the ground set E = [n]. Which of the
following is not a matroid?

A. M = (E, I) for I = {X ⊆ E : |X| ≤ n
100}

B. M = (E, I) for I = {∅, {1}}

C. M = (E, I) for I = {∅} ∪ {X ⊆ E : 1 ∈ X}

D. M = (E, I) for I = {X ⊆ E : 1 /∈ X}

Solution. Answer: C.

A. is an example of a k-uniform matroid

B. is a matroid (it is straightforward to check that the two axioms hold).

C. is not a matroid: the first axiom fails, because {1, 2} ∈ I, {2} ⊆ {1, 2}, but {2} /∈ I.

D. is a matroid: If Y ∈ I and X ⊆ Y , then 1 /∈ X, so X ∈ I, so the first axiom holds. To
check the second axiom: Suppose X,Y ∈ I and |X| < |Y |. Pick any i ∈ Y \X. Then i ̸= 1
(since i ∈ Y), so X ∪ {i} ∈ I.

□

1b. Duality (13 points). What is the Dual of the following Linear Program:

Minimize x1 + 2x2

Subject to 5x1 + x2 ≥ 2

2x1 + x2 ≥ 1

4x2 ≤ 10

x1, x2 ≥ 0

A.

Maximize 2y1 + y2 − 10y3

Subject to 5y1 + 2y2 ≤ 1

y1 + y2 − 4y3 ≤ 2

y1, y2, y3 ≥ 0

B.

Maximize 2y1 + y2 + 10y3

Subject to 5y1 + 2y2 ≤ 1

y1 + y2 + 4y3 ≤ 2

y1, y2, y3 ≥ 0

Page 2 (of 8)

CS-450 Algorithms II • Fall 2024-2025
Michael Kapralov & Ola Svensson

C.

Maximize 2y1 + y2 + 10y3

Subject to 5y1 + 2y2 ≥ 2

y1 + y2 + 4y3 ≥ 1

y1, y2, y3 ≥ 0

D. None of the above

Solution. The primal can be rewritten in the standard form

Minimize x1 + 2x2

Subject to 5x1 + x2 ≥ 2

2x1 + x2 ≥ 1

−4x2 ≥ −10

x1, x2 ≥ 0

so the correct solution is A:

Maximize 2y1 + y2 − 10y3

Subject to 5y1 + 2y2 ≤ 1

y1 + y2 − 4y3 ≤ 2

y1, y2, y3 ≥ 0

□

1c. Maximum Bipartite Matching (13 points). Consider a graph G = (V,E) that is bipar-
tite, i.e. the vertices V are partitioned into the two disjoint sets A and B such that every edge
is between a vertex in A and a vertex in B. Moreover, the graph G is d-regular, i.e. every vertex
has degree d, with d > 0. What is the size of the minimum vertex cover in the graph?

A. d · |A|

B. 1
d · |B|

C. |A|

D. |A|+ |B|

Solution. First, for any subset S ⊆ A, the number of edges incident to S is d·|S|. The neighbors
of S in B, denoted N(S), must also have d · |N(S)| edges. Since each edge incident to S is also
incident to N(S), we have d · |S| ≤ d · |N(S)|, implying |S| ≤ |N(S)|. By Hall’s theorem, this
guarantees a perfect matching of size min(|A|, |B|). Since the graph is regular, d · |A| = d · |B|,
so |A| = |B|. Finally, by König’s theorem, the size of the minimum vertex cover equals the size
of the maximum matching, which is |A|. □

Page 3 (of 8)

CS-450 Algorithms II • Fall 2024-2025
Michael Kapralov & Ola Svensson

Problem 2: Knapsack polytope extreme points (20 points)

In the Fractional Knapsack problem, we are given n items, each having a value v1, . . . , vn and
a weight w1, . . . , wn, along with a maximum capacity C. Our goal is to pick fractions of these
items, so as to maximize their total value, subject to the constraint that the selected fractions
have a total weight of at most C. This problem is captured by the following linear program:

Maximize
n∑

i=1

vixi

Subject to:
n∑

i=1

wixi ≤ C

0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , n}

where each variable xi corresponds to the fraction of i-th item in our solution.

Your task is to prove that all extreme points of the feasible region, defined by the above con-
straints, have at least n− 1 integral coordinates. In other words, you should prove that, for any
extreme point solution x∗, we have |{i | 0 < x∗i < 1}| ≤ 1.

Solution. Let x be an extreme point of the above polytope and suppose that it has at most
n−2 integral coordinates. Let i and j be two of its fractional coordinates, that is 0 < xi, xj < 1.

Choose any ϵ such that 0 < ϵ < min(wℓ(1 − xℓ), wℓxℓ : ∀ℓ ∈ {i, j}). Notice that, due to xi and
xj being fractional, such an ϵ exists. Using our choice, we construct the following solutions to
the linear program.

y =


xℓ if ℓ ̸∈ {i, j}
xi +

ϵ
wi

if ℓ = i

xj − ϵ
wj

if ℓ = j

z =


xℓ if ℓ ̸∈ {i, j}
xi − ϵ

wi
if ℓ = i

xj +
ϵ
wj

if ℓ = j

Observe that both solutions are feasible since all of their coordinates have values in [0, 1] and
they also satisfy the capacity constraint since

n∑
i=1

wiyi =

n∑
i=1

wizi =

n∑
i=1

wixi ≤ C.

We finish the proof by noticing that x can be written as

x =
1

2
y +

1

2
z,

which contradicts the fact that x is an extreme point of the polytope.
□

Page 4 (of 8)

CS-450 Algorithms II • Fall 2024-2025
Michael Kapralov & Ola Svensson

Problem 3: Matching on general graphs (21 points)

In class you have seen the following linear program to solve maximum weight matching on
bipartite graphs:

Maximize
∑
e∈E

xewe

Subject to
∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

(1)

Here, we use δ(v) to be the set of edges incident to vertex v, formally, δ(v) = {e ∈ E : v ∈ e}.
In this problem you are supposed to prove that the integrality gap of this linear program

on general graphs is 3/2. In the case of a maximization problem the integrality gap g is defined
as

g = max
I∈I

OPTLP (I)

OPT (I)
,

where I is the set of all problem instances.

3a (8 points). Show that the integrality gap g is at least 3/2.

3b (13 points). Show that the integrality gap g is at most 3/2. You are allowed to use the
following fact without proof. The extreme points of the following linear program are integral.

Maximize
∑
e∈E

xewe

Subject to
∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

∑
e∈E,
e⊆S

xe ≤
|S| − 1

2
∀S ⊆ V, |S| is odd

xe ≥ 0 ∀e ∈ E

(2)

Hint: Let x be a solution to the linear program (1). Analyze a scaled version of x using (2).

Solution. 3a. Consider the following example:

1 2

3

1

1 1

Here, the solution that sets xe = 1/2 for every edge e has value 3/2, but any integral matching
has only value 1.

Page 5 (of 8)

CS-450 Algorithms II • Fall 2024-2025
Michael Kapralov & Ola Svensson

3b. Consider the optimal solution x to the first linear program. The point 2
3x is feasible for the

second linear program. Indeed,

2

3
·
∑
e∈E,
e⊆S

xe ≤
2

3
· 1
2
·
∑
v∈S

∑
e∈δ(v)

xe =
|S|
3

≤ |S| − 1

2
.

Here, we used the degree constraint from LP (1). Note that 2
3x achieves the weight

2

3

∑
e∈E

xewe.

Since the second linear program is integral, we know that there exists an integral matching with
weight at least the weight of 2

3x. In particular, for any instance I,

OPTLP (I)

OPT (I)
≤

∑
e∈E xewe

2
3

∑
e∈E xewe

=
3

2
.

□

Page 6 (of 8)

CS-450 Algorithms II • Fall 2024-2025
Michael Kapralov & Ola Svensson

Problem 4: Pizzeria (20 points)

Your friend is building an online ordering platform for their pizzeria. Every evening, when the
pizzeria opens at 18h00, the situation is the following.

• There are n pizzas requested.

• Each pizza i ∈ [n] has a requested pick-up time ti which is either 19h00, 20h00, 21h00.

• Each pizza i ∈ [n] can give a profit pi.

• There are 3 different kinds of pizza dough (regular, gluten free, whole grain). Each pizza
i ∈ [n] is requested to be made with one of these dough types, i.e. the set of pizzas [n] can
be partitioned into three sets R,G,W ⊆ [n].

Design a polynomial time algorithm that:

• takes as input n, (ti)i∈[n], (pi)i∈[n], R,G,W as described above, and two integers d, h > 0.

• outputs a subset S ⊆ [n] of pizzas such that the profit
∑

i∈S pi is maximized, subject to
the following constraints:

(1) for each of the three types of dough R,G,W , there is only enough dough to make d
pizzas from it, so S can contain at most d pizzas of each type;

(2) it is possible to prepare all the pizzas in S so that
– each pizza i ∈ S is ready before its pick-up time ti, and
– at most h pizzas are prepared during each hour 18h00–18h59, 19h00–19h59,

20h00–20h59.

One can encode each of the constraints (1) and (2) via a matroid. You are allowed to use the
following fact without proof. Remember that a family F of subsets of the ground set [n] is called
laminar if for all distinct X,Y ∈ F , either X∩Y = ∅, or X ⊆ Y , or Y ⊆ X. For a laminar family
F and any set of positive integers {kX}X∈F , one has that M = ([n], I) is a matroid, where

I = {T ⊆ [n] : |T ∩X| ≤ kX for every X ∈ F}.

Example. Let us say we have n = 30 pizzas, and let d = 7 and h = 3. Suppose that 10 of the
pizzas have ti =19h00, 10 have ti =20h00, and 10 have ti =21h00.

• Let S1 be a set consisting of 7 pizzas with ti =21h00. Then S1 satisfies constraint (2).

• Let S2 be a set consisting of 1 pizza with ti =19h00, 4 pizzas with ti =20h00, and 2 pizzas
with ti =21h00. Then S2 satisfies constraint (2).

• Let S3 be a set consisting of 1 pizza with ti =19h00 and 6 pizzas with ti =20h00. Then S3

does not satisfy constraint (2).

Note that each of S1, S2, S3 contains at most 7 pizzas. Hence, constraint (1) is satisfied by each
of them, no matter what R,G,W are.

Solution. The problem can be solved by defining two matroids M1 = ([n], I1) and M2 =
([n], I2) and finding the maximum weight independent set in their intersection. The matroid
M1 is meant to capture constraint (1) above, while M2 is meant to capture constraint (2).
More precisely:

Page 7 (of 8)

CS-450 Algorithms II • Fall 2024-2025
Michael Kapralov & Ola Svensson

1. Let
I1 = {S ⊆ [n] : |S ∩R| ≤ d, |S ∩G| ≤ d, |S ∩W | ≤ d} .

Since R,G,W partition [n], we have that ([n], I1) is a partition matroid. By virtue of
intersecting with this matroid, there will be enough dough to make each type of pizza in
our output solution S ⊆ [n].

2. Define

T1 = {i ∈ [n] : ti = 19h00} ,
T2 = {i ∈ [n] : ti = 20h00} ,
T3 = {i ∈ [n] : ti = 21h00} ,
X1 = {i ∈ [n] : i ∈ T1} ,
X2 = {i ∈ [n] : i ∈ T1 ∪ T2} ,
X3 = {i ∈ [n] : i ∈ T1 ∪ T2 ∪ T3} ,

and let
I2 = {S ⊆ [n] : ∀j ∈ {1, 2, 3}, |S ∩Xj | ≤ h · j} .

First observe that {X1, X2, X3} is a laminar family because X1 ⊆ X2 ⊆ X3. Then ([n], I2)
is a (laminar) matroid. By virtue of intersecting with this matroid, we are guaranteed that
each pizza i ∈ S can be prepared within its pick-up time ti while only preparing h pizzas
per hour. In particular, we will start preparing the pizzas with the following priority: first
the pizzas in S ∩T1, then the pizzas in S ∩T2 and last the pizzas in S ∩T3. We will always
prepare exactly h pizzas each hour unless all the pizzas are already prepared. Assume for
contradiction that there is a pizza i ∈ S ∩ Tj that does not meet its pick-up time. That
means that there are more than h · j pizzas with higher or equal priority than i in S. This
is a contradiction to the constraint that |S ∩Xj | ≤ h · j.

□

Page 8 (of 8)

CS-450 Algorithms II • Fall 2024-2025
Michael Kapralov & Ola Svensson

