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Midterm Exam, Algorithms 11 2023-2024

Do not turn the page before the start of the exam. This document is double-sided,
has 6 pages, the last ones possibly blank. Do not unstaple.

e The exam consists of three parts. The first part consists of multiple-choice questions, the
second part consists of a short open question, and the last part consists of three open-ended
questions.

e For the open-ended questions, your explanations should be clear enough and in sufficient
detail that a fellow student can understand them. In particular, do not only give pseu-
docode without explanations. A good guideline is that a description of an algorithm should
be such that a fellow student can easily implement the algorithm following the description.

e You are allowed to refer to material covered in the lectures including algorithms and the-
orems (without reproving them). You are however not allowed to simply refer to material
covered in exercises/homework.

Good luck!
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Problem 1: Multiple Choice Questions (24 points)

For each question, select the correct alternative. Note that each question has exactly one
correct answer. Wrong answers are not penalized with negative points.

la. Matroids (8§ points). Consider the ground set E = {a,b,c,d}. Select a collection Z of
independent sets from below such that (E,Z) is a matroid.

A {{} {a}, {0}, {ct {a, b}, {a, ¢}, {a, d}}

B. {{}{a}, {0}, {c}, {a,b}}

C. {{} {a}, {b}, {c}}

D. {{};{a}, {b}, {c}, {d}, {a, b}, {a, ¢}, {b, c}, {b, d}, {a, b, c}, {b, ¢, d} }
B {{} {a},{b}, {c}, {a, b, c}}

Solution. The correct answer is option C.
The set in option C' satisfies the conditions of a matroid. You don’t need to check the other
options since there is always one correct answer, but let’s see why they fail:

e Option A can not be a matroid because it’s not downwards closed: {a,d} € Z and {d} C
{a,d} but {d} €7

e Option B does not satisfy the extension property: {c} € Z, {a,b} € T and |[{c}| < |{a, b}|,
but you can not add any element from {a,b} \ {c} to {c} and still get an independent set.

e Option D is not downwards closed: {b,¢,d} € Z and {c,d} C {b,c,d} but {c,d} €T
e Option E also is not downwards closed: {a,b,c} € Z and {a,b} C {a,b,c} but {a,b} ¢ T

1b. Vertex-Cover relaxation (8§ points). Consider the minimum vertex cover problem, and
consider the linear programming (LP) relaxation for vertex cover you saw in class. For a graph
G, denote by OPT(G) the cost of an optimum vertex cover for G, and by OPTyp(G) the cost of
an optimal solution of the LP relaxation. Which one of the following statements is true?

A. There is a graph G so that OPT(G) > 4- OPTpp(G).

B. For all n-vertex graphs G, we have OPTp(G) > n/2.

C. If an n-vertex graph G has OPT(G) = 3n/4, then OPT1p(G) > 3n/4.
D. For all graphs G, it holds that OPT(G) > OPTpp(G).

E. There exists a graph such that OPTrp(G) > 2 - OPT(G).

Solution. The correct answer is option D. The best integral optimal value is always bigger or
equal to the best fractional optimal value (in a minimization problem). Let’s also see why the
rest of the choices are incorrect

e Option A is incorrect because since OPT(G) < 2- OPTpp(G). This holds because we can
always round a fractional solution of the Vertex Cover LP and lose at most a factor of 2.
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e Option B is also incorrect. To see this, let G be an n-vertex star. Then taking the central
node is a valid vertex cover. Therefore OPTrp(G) = 1.

e Option C is also incorrect. Let G be a 4-vertex clique. Then OPT(G) = 3n/4 = 3, but
OPTrLp(G) = 2 by putting 1/2 on every vertex.

e Option E is incorrect because we know that OPT1p(G) < 1/20PT(G)

lc. Weighted Majority (8 points). We apply the weighted majority algorithm to aggregate
the (binary) answers of 17 experts. At every step, we divide by 2 the weights of those experts that
provided a wrong answer. Assume that ¢ experts always provide the correct answer. What is the
smallest value of ¢ for which the total number of mistakes we make is at most 1, independently
of the answers given by the other 17 — ¢ experts?

A3
B. 4
C. 5
D. 6
E. 7

Solution. The correct answer is option E, ¢ := 7.

Initially, the total weight is 17 and the “good” experts have total weight c¢. We claim ¢ = 7 such
experts suffice for us to make at most one mistake. As soon as one mistake is made, from the
lecture we have that the total new weight can be at most % = 12.75. The weight of the “good”
experts is still ¢ as they made no mistake. Notice that:

1
=7>--12.75
c 5 )

so making a new mistake is impossible.

If we make ¢ smaller, e.g., ¢ = 6, we might already run into trouble. Assume in the first
step 9 experts are wrong (so we make a mistake). Then, after this step, the total weight is
8 + 4.5 = 12.5. For the second step, assume all 17 — ¢ = 11 experts excepting the good ones are
wrong. Their total weight contribution is 12.5 — 6 = 6.5 > 6, so we will follow their advice and
be wrong again.
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Problem 2: Short Open Question (10 points)

Write the dual linear program of the following linear program. No explanation is needed for your
answer.

min 3x1 + 5xo + T3
st. x1+z04+23>1
Tro — 2.7)3 <

3
1, T2,23 2 0

Solution.

max Y1 — 3y2

N
o

s.t. U1
Y1 — Y2

Y1 + 2y

n

Y2

VvV A A
o o = o
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Problem 3: Extreme Point Structure (22 points)

Given a graph G = (V, E) with edge-weights w : E — R, consider the matching problem where
we wish to select a matching of maximum weight consisting of exactly k& edges. We can adapt
the linear program seen in class to obtain the following relaxation:

maximize Z xe - w(e)

eck
subject to Z Te <1 YveV
e€d(v)
T
eckE

Te =0 Vee E

where §(v) denotes the set of edges incident to vertex v.

Let x* be an extreme point of the above linear program. Consider the graph G’ which is the
subgraph of G that contains only the edges with z* > 0. Prove that G’ contains no cycles
of even length. A cycle has an even length if it has an even number of edges.

Solution.Let z* be an extreme point and let G’ = {e € E : 2} > 0}. Suppose for contradic-

tion that G’ contains an even cycle ey, es, . . ., eg;. We will show that there exists feasible solutions
y # z such that x = %y + %z.
Let € = min{z} ,zf,,...,2;,} > 0. Define y and 2 by
xt+e ifee{e,es,...,eq-1}
Ye = x5 — €, if e € {ea,e4,...,e9}
x}, otherwise
and
xt —¢, ifee{er,es,...,69-1}
ze = xi+¢€, ife€{eeq,...,e9}
), otherwise.

e

Notice that y and z are feasible. Indeed,
Zyezz,ze:zg::<1 YveV
e€d(v) e€d(v) e€d(v)

(if v is on the cycle then we add and substract € on its neighbourhood, and if v is not on the
cycle then we don’t change anything), and

Sge= 2= aited-d=t
ecl eck ecE

Finally, ze, y. > 0 for all e € E by definition of e.
We now have z* = J(y + z), and clearly y # 2 (since € > 0). So z* is a convex combination
of feasible solutions, contradicting the assumption that z* is an extreme point.
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Problem 4: Prize-Collecting Vertex Cover and Duality (22 points)

The prize-collecting vertex cover problem is a generalization of vertex cover in which we are not
obligated to cover all edges, but must pay a penalty for those left uncovered. A formal definition
is as follows:

Input: An undirected graph G = (V, E') with a penalty p. > 0 for every edge e € E.
Output: A subset C' C V of vertices so as to minimize |C| + ) c p.cnc—p Pe-

To formulate a linear programming relaxation, we associate a variable x, for every vertex v € V,
and a variable z, for every edge e € E. The intended meaning of these variables is that z,
indicates whether v € C' and z. indicates whether e pays a penalty, i.e., is not covered by C. We
then arrive at the following linear programming (LP) relaxation and its dual:

(Primal) LP Relaxation

(Dual)

minimize » z, + > pe-z maximize .
veV eckE eeFE
subject to z, + 2, + 2. =1 fore={u,v} € E subject to Z Ye <1 forveV
e€d(v)
T, =20 forveV e <pe forecE
220 foreecE Y =0 forec E

Recall that d(v) denotes the set of edges incident to vertex v € V.

We will analyze a simple and very fast primal-dual algorithm for the prize-collecting vertex
cover problem. The algorithm maintains a feasible dual solution y initially set to y. = 0 for
every e € E. It then iteratively improves the dual solution until every edge e € E not covered
by the set C' = {v € V : Zeg&(v) ye = 1} corresponds to a tight constraint y. = p.. Note that
C consists of those vertices whose constraints in the dual are tight and the algorithm only stops
when the edges not covered by C correspond to tight dual constraints. The formal description
of the algorithm is as follows:

1) Initialize the dual solution y to be y. = 0 for every e € E.

2) While there is an edge e with y. < p. and that is not covered by C' = {v € V :
Zeea(v) ye =1}, ie, enC =0

e Increase y. until one of the dual constraints (corresponding to u,v or e)
becomes tight.

3) Return C={v €V : 3" 50y ¥e = 1}

Prove that the primal-dual algorithm has an approximation guarantee of 2. That
is, show that the returned set C has value

|C| + Z De
ecElenC=0

at most twice the value of an optimal solution. Partial credits will be given to solutions
that bound the approximation guarantee by 3.
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Solution. We show that

ICl+ Y pe<2OPTyp,
ecE:eNC=0

where OPTpp is the value optimal linear programming solution.

program is a relaxation this would imply that
ICl+ Y. pe<2OPT,
e€E:eNC=0
We have the following equations.

Cl+ > pe

ecE:eNC=0

= Z 14—2:;06

UEV:Zeeé(u) Ye=1 e:eNC'=0

= > Sue |+ D we

VEVY es(v) Ye=1 \e€6(v) e:eNC=0
CY s Y

e:eNC#D e:eNC=0

<2 OPTrp

Note that since the linear

The first term in line (??) follows by our choice of C. The second term in equation (??) follows
because whenever e N C' = () we have y. = p.. The first term in line (??) follows because y.
appears |y. N C| many times in the first term in line (?7). Finally line (??) follows by weak

duality.
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Problem 5: Edge-Disjoint Spanning Trees (22 points)

Given a graph G = (V, E), design and analyze a polynomial-time algorithm that does the
following: Construct three spanning trees of G that share no edges, or report that this task is
impossible (i.e., that G does not have three edge-disjoint spanning trees).

Solution. In this problem given a graph G = (V, E) we are asked to find 3 edge-disjoint spanning
trees if they exist or report that they do not, in polynomial time. We will solve this problem via
matroid intersection.

We will first create 3 copies of the graph G, G; = (V1, E1),Ga = (Va, E2),Gs = (V3, E3),
and consider the graph G' = (V1 UV, U V3, By U E2 U E3). Thus G is a forest with 3 edge and
vertex disjoint copies of G. Our first matroid M; will be the graphic matroid on G’. Our second
matroid My = (E’,Z) will be the following partition matroid

T={XCE:|Xn{e, e el}| <1 Ve € E},

where for every edge ¢’ € E, e} € E; denotes the 4t copy of € for j € {1,2,3}. Now we consider
finding the maximum cardinality independent set in M; N My, this can be found in polynomial
time using matroid intersection algorithm.

If the size of the output is 3(|V| —1), then we have found 3 edge disjoint spanning trees. This
is simply because the maximum size of an acyclic subgraph in G; is at most |V| —1 when it is a
spanning tree for all j € {1, 2,3}, and the second matroid ensures we only take any edge once in
our solution. Thus our solution must be the union of 3 edge disjoint spanning trees. If the size
of solution is strictly less than 3(|V| — 1) then we output that there is no solution.
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