
Midterm Exam, Algorithms II 2023-2024
Do not turn the page before the start of the exam. This document is double-sided,
has 6 pages, the last ones possibly blank. Do not unstaple.

• The exam consists of three parts. The first part consists of multiple-choice questions, the
second part consists of a short open question, and the last part consists of three open-ended
questions.

• For the open-ended questions, your explanations should be clear enough and in sufficient
detail that a fellow student can understand them. In particular, do not only give pseu-
docode without explanations. A good guideline is that a description of an algorithm should
be such that a fellow student can easily implement the algorithm following the description.

• You are allowed to refer to material covered in the lectures including algorithms and the-
orems (without reproving them). You are however not allowed to simply refer to material
covered in exercises/homework.

Good luck!
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Problem 1: Multiple Choice Questions (24 points)

For each question, select the correct alternative. Note that each question has exactly one
correct answer. Wrong answers are not penalized with negative points.

1a. Matroids (8 points). Consider the ground set E = {a, b, c, d}. Select a collection I of
independent sets from below such that (E, I) is a matroid.

A. {{}, {a}, {b}, {c} {a, b}, {a, c}, {a, d}}

B. {{}, {a}, {b}, {c}, {a, b}}

C. {{}, {a}, {b}, {c}}

D. {{}, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, c}, {b, d}, {a, b, c}, {b, c, d}}

E. {{}, {a}, {b}, {c}, {a, b, c}}

1b. Vertex-Cover relaxation (8 points). Consider the minimum vertex cover problem, and
consider the linear programming (LP) relaxation for vertex cover you saw in class. For a graph
G, denote by OPT(G) the cost of an optimum vertex cover for G, and by OPTLP(G) the cost of
an optimal solution of the LP relaxation. Which one of the following statements is true?

A. There is a graph G so that OPT(G) > 4 ·OPTLP(G).

B. For all n-vertex graphs G, we have OPTLP (G) > n/2.

C. If an n-vertex graph G has OPT(G) = 3n/4, then OPTLP(G) > 3n/4.

D. For all graphs G, it holds that OPT(G) > OPTLP(G).

E. There exists a graph such that OPTLP(G) > 2 ·OPT(G).

1c. Weighted Majority (8 points). We apply the weighted majority algorithm to aggregate

the (binary) answers of 17 experts. At every step, we divide by 2 the weights of those experts that
provided a wrong answer. Assume that c experts always provide the correct answer. What is the
smallest value of c for which the total number of mistakes we make is at most 1, independently
of the answers given by the other 17− c experts?

A. 3

B. 4

C. 5

D. 6

E. 7
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Problem 2: Short Open Question (10 points)

Write the dual linear program of the following linear program. No explanation is needed for your
answer.

min 3x1 + 5x2 + x3

s.t. x1 + x2 + x3 > 1

x2 − 2x3 6 3

x1, x2, x3 > 0
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Problem 3: Extreme Point Structure (22 points)

Given a graph G = (V,E) with edge-weights w : E → R, consider the matching problem where
we wish to select a matching of maximum weight consisting of exactly k edges. We can adapt
the linear program seen in class to obtain the following relaxation:

maximize
∑
e∈E

xe · w(e)

subject to
∑
e∈δ(v)

xe 6 1 ∀v ∈ V

∑
e∈E

xe = k

xe > 0 ∀e ∈ E

where δ(v) denotes the set of edges incident to vertex v.
Let x∗ be an extreme point of the above linear program. Consider the graph G′ which is the

subgraph of G that contains only the edges with x∗e > 0. Prove that G′ contains no cycles
of even length. A cycle has an even length if it has an even number of edges.
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Problem 4: Prize-Collecting Vertex Cover and Duality (22 points)

The prize-collecting vertex cover problem is a generalization of vertex cover in which we are not
obligated to cover all edges, but must pay a penalty for those left uncovered. A formal definition
is as follows:

Input: An undirected graph G = (V,E) with a penalty pe > 0 for every edge e ∈ E.

Output: A subset C ⊆ V of vertices so as to minimize |C|+
∑

e∈E:e∩C=∅ pe.

To formulate a linear programming relaxation, we associate a variable xv for every vertex v ∈ V ,
and a variable ze for every edge e ∈ E. The intended meaning of these variables is that xv
indicates whether v ∈ C and ze indicates whether e pays a penalty, i.e., is not covered by C. We
then arrive at the following linear programming (LP) relaxation and its dual:

(Primal) LP Relaxation

minimize
∑
v∈V

xv +
∑
e∈E

pe · ze

subject to xu + xv + ze > 1 for e = {u, v} ∈ E

xv > 0 for v ∈ V

ze > 0 for e ∈ E

(Dual)

maximize
∑
e∈E

ye

subject to
∑
e∈δ(v)

ye 6 1 for v ∈ V

ye 6 pe for e ∈ E
ye > 0 for e ∈ E

Recall that δ(v) denotes the set of edges incident to vertex v ∈ V .
We will analyze a simple and very fast primal-dual algorithm for the prize-collecting vertex

cover problem. The algorithm maintains a feasible dual solution y initially set to ye = 0 for
every e ∈ E. It then iteratively improves the dual solution until every edge e ∈ E not covered
by the set C = {v ∈ V :

∑
e∈δ(v) ye = 1} corresponds to a tight constraint ye = pe. Note that

C consists of those vertices whose constraints in the dual are tight and the algorithm only stops
when the edges not covered by C correspond to tight dual constraints. The formal description
of the algorithm is as follows:

1) Initialize the dual solution y to be ye = 0 for every e ∈ E.

2) While there is an edge e with ye < pe and that is not covered by C = {v ∈ V :∑
e∈δ(v) ye = 1}, i.e., e ∩ C = ∅:

• Increase ye until one of the dual constraints (corresponding to u, v or e)
becomes tight.

3) Return C = {v ∈ V :
∑

e∈δ(v) ye = 1}.

Prove that the primal-dual algorithm has an approximation guarantee of 2. That
is, show that the returned set C has value

|C|+
∑

e∈E|e∩C=∅

pe

at most twice the value of an optimal solution. Partial credits will be given to solutions
that bound the approximation guarantee by 3.
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Problem 5: Edge-Disjoint Spanning Trees (22 points)

Given a graph G = (V,E), design and analyze a polynomial-time algorithm that does the
following: Construct three spanning trees of G that share no edges, or report that this task is
impossible (i.e., that G does not have three edge-disjoint spanning trees).
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