

Midterm Exam, Algorithms II 2023-2024

Do not turn the page before the start of the exam. This document is double-sided, has 6 pages, the last ones possibly blank. Do not unstaple.

- The exam consists of three parts. The first part consists of multiple-choice questions, the second part consists of a short open question, and the last part consists of three open-ended questions.
- For the open-ended questions, your explanations should be clear enough and in sufficient detail that a fellow student can understand them. In particular, do not only give pseudocode without explanations. A good guideline is that a description of an algorithm should be such that a fellow student can easily implement the algorithm following the description.
- You are allowed to refer to material covered in the lectures including algorithms and theorems (without reproving them). You are however *not* allowed to simply refer to material covered in exercises/homework.

Good luck!

Problem 1: Multiple Choice Questions (24 points)

For each question, select the correct alternative. Note that each question has **exactly one** correct answer. Wrong answers are not penalized with negative points.

- **1a.** Matroids (8 points). Consider the ground set $E = \{a, b, c, d\}$. Select a collection \mathcal{I} of independent sets from below such that (E, \mathcal{I}) is a matroid.
 - A. $\{\{\}, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{a,d\}\}$
 - B. $\{\{\}, \{a\}, \{b\}, \{c\}, \{a, b\}\}$
 - C. $\{\{\}, \{a\}, \{b\}, \{c\}\}\}$
 - D. $\{\{\}, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{a,c\}, \{b,c\}, \{b,d\}, \{a,b,c\}, \{b,c,d\}\}\}$
 - E. $\{\{\}, \{a\}, \{b\}, \{c\}, \{a, b, c\}\}\$
- **1b.** Vertex-Cover relaxation (8 points). Consider the minimum vertex cover problem, and consider the linear programming (LP) relaxation for vertex cover you saw in class. For a graph G, denote by OPT(G) the cost of an optimum vertex cover for G, and by $OPT_{LP}(G)$ the cost of an optimal solution of the LP relaxation. Which one of the following statements is true?
 - A. There is a graph G so that $OPT(G) \ge 4 \cdot OPT_{LP}(G)$.
 - B. For all *n*-vertex graphs G, we have $OPT_{LP}(G) \ge n/2$.
 - C. If an *n*-vertex graph G has OPT(G) = 3n/4, then $OPT_{LP}(G) \ge 3n/4$.
 - D. For all graphs G, it holds that $OPT(G) \ge OPT_{LP}(G)$.
 - E. There exists a graph such that $OPT_{LP}(G) > 2 \cdot OPT(G)$.
- 1c. Weighted Majority (8 points). We apply the weighted majority algorithm to aggregate

the (binary) answers of 17 experts. At every step, we divide by 2 the weights of those experts that provided a wrong answer. Assume that c experts always provide the correct answer. What is the smallest value of c for which the total number of mistakes we make is $at \ most \ 1$, independently of the answers given by the other 17-c experts?

- A. 3
- B. 4
- C. 5
- D. 6
- E. 7

Page 2 (of 6)

Problem 2: Short Open Question (10 points)

Write the dual linear program of the following linear program. No explanation is needed for your answer.

min
$$3x_1 + 5x_2 + x_3$$

s.t. $x_1 + x_2 + x_3 \ge 1$
 $x_2 - 2x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

Problem 3: Extreme Point Structure (22 points)

Given a graph G = (V, E) with edge-weights $w : E \to \mathbb{R}$, consider the matching problem where we wish to select a matching of maximum weight consisting of exactly k edges. We can adapt the linear program seen in class to obtain the following relaxation:

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} x_e \cdot w(e) \\ \\ \text{subject to} & \sum_{e \in \delta(v)} x_e \leqslant 1 & \forall v \in V \\ \\ & \sum_{e \in E} x_e = k \\ \\ & x_e \geqslant 0 & \forall e \in E \end{array}$$

where $\delta(v)$ denotes the set of edges incident to vertex v.

Let x^* be an extreme point of the above linear program. Consider the graph G' which is the subgraph of G that contains only the edges with $x_e^* > 0$. Prove that G' contains no cycles of even length. A cycle has an even length if it has an even number of edges.

Problem 4: Prize-Collecting Vertex Cover and Duality (22 points)

The prize-collecting vertex cover problem is a generalization of vertex cover in which we are not obligated to cover all edges, but must pay a penalty for those left uncovered. A formal definition is as follows:

Input: An undirected graph G = (V, E) with a penalty $p_e \ge 0$ for every edge $e \in E$.

Output: A subset $C \subseteq V$ of vertices so as to minimize $|C| + \sum_{e \in E: e \cap C = \emptyset} p_e$.

To formulate a linear programming relaxation, we associate a variable x_v for every vertex $v \in V$, and a variable z_e for every edge $e \in E$. The intended meaning of these variables is that x_v indicates whether $v \in C$ and z_e indicates whether e pays a penalty, i.e., is not covered by C. We then arrive at the following linear programming (LP) relaxation and its dual:

(Primal) LP Relaxation
$$\begin{aligned} & \mathbf{minimize} & & \sum_{v \in V} x_v + \sum_{e \in E} p_e \cdot z_e \\ & \mathbf{subject to} & & x_u + x_v + z_e \geqslant 1 \quad \text{for } e = \{u,v\} \in E \\ & & x_v \geqslant 0 \quad \text{for } v \in V \\ & & z_e \geqslant 0 \quad \text{for } e \in E \end{aligned}$$

$$\begin{array}{ll} \text{(Dual)} \\ \\ \text{maximize} & \displaystyle \sum_{e \in E} y_e \\ \\ \text{subject to} & \displaystyle \sum_{e \in \delta(v)} y_e \leqslant 1 \quad \text{ for } v \in V \\ \\ y_e \leqslant p_e \quad \text{for } e \in E \\ \\ y_e \geqslant 0 \quad \text{ for } e \in E \end{array}$$

Recall that $\delta(v)$ denotes the set of edges incident to vertex $v \in V$.

We will analyze a simple and very fast primal-dual algorithm for the prize-collecting vertex cover problem. The algorithm maintains a feasible dual solution y initially set to $y_e = 0$ for every $e \in E$. It then iteratively improves the dual solution until every edge $e \in E$ not covered by the set $C = \{v \in V : \sum_{e \in \delta(v)} y_e = 1\}$ corresponds to a tight constraint $y_e = p_e$. Note that C consists of those vertices whose constraints in the dual are tight and the algorithm only stops when the edges not covered by C correspond to tight dual constraints. The formal description of the algorithm is as follows:

- 1) Initialize the dual solution y to be $y_e = 0$ for every $e \in E$.
- 2) While there is an edge e with $y_e < p_e$ and that is not covered by $C = \{v \in V : \sum_{e \in \delta(v)} y_e = 1\}$, i.e., $e \cap C = \emptyset$:
 - Increase y_e until one of the dual constraints (corresponding to u, v or e) becomes tight.
- 3) Return $C = \{v \in V : \sum_{e \in \delta(v)} y_e = 1\}.$

Prove that the primal-dual algorithm has an approximation guarantee of 2. That is, show that the returned set C has value

$$|C| + \sum_{e \in E \mid e \cap C = \emptyset} p_e$$

at most twice the value of an optimal solution. Partial credits will be given to solutions that bound the approximation guarantee by 3.

Page 5 (of 6)

Problem 5: Edge-Disjoint Spanning Trees (22 points)
Given a graph $G = (V, E)$, design and analyze a polynomial-time algorithm that does the following: Construct three spanning trees of G that share no edges, or report that this task is impossible (i.e., that G does not have three edge-disjoint spanning trees).