

Midterm Exam, Advanced Algorithms 2020-2021

- You are allowed to consult lectures notes of the course, but no outside material.
- Communication is not allowed.
- Your explanations should be clear enough and in sufficient detail that a fellow student
 can understand them. In particular, do not only give pseudo-code without explanations.
 A good guideline is that a description of an algorithm should be such that a fellow
 student can easily implement the algorithm following the description.
- You are allowed to refer to material covered in the lecture notes including theorems without reproving them.

Good luck!

Name:	N° Sciper:

Problem 2	Problem 3	Problem 4
/ 30 points	/ 20 points	/ 28 points

Total	/	100

1 (22 pts) LP duality. Write down the duals of the linear programs below together with complimentary slackness conditions.

1a

minimize
$$3x_1 + 4x_2$$

s. t. $x_1 + 2x_2 \ge 1$
 $2x_1 + 4x_2 \ge 5$
 $x_1, x_2 \ge 0$.

1b

$$\begin{array}{ll} \text{maximize} & 3x_1+4x_2+x_3\\ \text{s. t.} & x_1+2x_2-x_3=0\\ & x_1+2x_3\leq 3\\ & 5x_1+x_2\leq 2\\ & x_1,x_2,x_3\geq 0. \end{array}$$

2 (30 pts) Optimal vertex removal. Suppose that you are given a directed graph G = (V, E) together with an assignment of costs to vertices $c: V \to \mathbb{R}_+$ and a set of vertices $S \subseteq V$ that form an independent set (i.e. none of the vertices in S are neighbors in G). We say that a subset $R \subseteq V \setminus S$ disconnects S if no vertex in S can reach another vertex in S when vertices in S are removed together with all their edges. Your task is to find the cheapest set of vertices S that disconnects S, where the cost of a set S is defined as S is define

Page 2 (of 8)

2a (8 pts) Let \mathcal{P} denote the set of simple¹ paths in G connecting pairs of vertices in S (here a path $P = (u_1, u_2, \ldots, u_k)$ is a sequence of vertices of G such that for every $i = 1, \ldots, k-1$ one has $(u_i, u_{i+1}) \in E$; a path is simple if it contains no repeated **vertices**). Consider the linear program below:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{v \in V \backslash S} c_v d_v \\ \text{s. t.} & \displaystyle \sum_{v \in P, v \in V \backslash S} d_v \geq 1 \qquad \text{for every } P \in \mathcal{P} \\ & d_v \geq 0 \qquad \qquad \text{for all } v \in V \backslash S. \end{array}$$

Prove that for every $R \subseteq V \setminus S$ that disconnects S there exists a feasible solution $(d_v)_{v \in V \setminus S}$ to the LP above with cost bounded by the cost of R.

2b (11 pts) Write down the dual of the LP in (a) together with complimentary slackness conditions.

2c (11 pts, half \star) Show how, given a candidate solution $d = (d_v)_{v \in V \setminus S}$, one can in polynomial time check whether d is feasible for the LP above, and find a violated constraint if d is not feasible.

Page 3 (of 8)

¹We call a path simple if it contains no repeated **vertices**.

olution to problem 2c	
age 4 (of 8)	

3 (20 pts) Collaborative basis. In the collaborative basis problem $d \geq 2$ participants are given $d \times n$ matrices A_1, \ldots, A_d for some $n \geq 1$. Their task is to select one column from each of the matrices $A_i, i = 1, \ldots, d$, so that the selected columns form a basis for the entire space \mathbb{R}^d . Give an efficient algorithm that, given matrices A_1, \ldots, A_d , outputs **YES** if such a collection of columns exists and **NO** otherwise.

Example 1. Suppose that d = 2, n = 4, and matrices A_1, A_2 are given by

$$A_1 = \begin{pmatrix} 5 & 2 & 1 & 2 \\ 5 & 1 & 5 & 0 \end{pmatrix}$$
 and $A_2 = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$.

Then taking the second column of A_1 and the first column of A_2 , we obtain a basis for \mathbb{R}^2 . Indeed, the matrix

$$\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

is full rank, so the answer is YES.

Example 2. Suppose that d = 3, n = 2, and matrices are given by

$$A_1 = \begin{pmatrix} 1 & 2 \\ -2 & 2 \\ 1 & 4 \end{pmatrix}, A_2 = \begin{pmatrix} -1 & 3 \\ 2 & 0 \\ -1 & 5 \end{pmatrix} \text{ and } A_3 = \begin{pmatrix} -2 & 6 \\ 4 & 0 \\ -2 & 10 \end{pmatrix}$$

Here one notes that columns of A_3 are just a scaled version of columns of A_2 , and columns of A_2 can be obtained by taking a linear combination of columns of A_1 , so it is not possible to choose one column from each matrix to obtain a basis for \mathbb{R}^3 .

Hint: use matroids. You may use the fact that, given a collection of k vectors in \mathbb{R}^d , one can check if the vectors are linearly independent (i.e., if the matrix whose columns are these vectors has rank k) in time polynomial in k and d.

Solution to problem 3	
Page 6 (of 8)	

- 4 (28 pts) Matrix reconstruction. A well known advertisement agency decided to hire you to find the right advertisement placement strategy for their clients. Suppose that there are n types of billboards in Lausanne and m clients, and you used a linear program to determine how many billboards of each type every client should use. Specifically, your LP solver produced an $n \times m$ matrix A, where for $i = 1, \ldots, n$ and $j = 1, \ldots, m$ the (i, j)'th entry of the matrix shows how many billboards of type i the j'th client should use. There is a problem though: the entries in the matrix are not integers. At the very least they are non-negative, however, and every row sum as well as every column sum is an integer. You will design an efficient algorithm to round the matrix entries to integers with the following constraints:
 - Any non-integer element x in the matrix can only be replaced by |x| or [x].
 - In the output matrix, for any row (or column), the sum of entries in that row (or column) should remain the same as in the initial matrix.

Note: there might be many correct output matrices for a given initial matrix, and you only need to output one of them. You should design the algorithm, prove its correctness and establish runtime bounds.

(Hint: use ideas developed in class for a problem on graphs)

Example 1: The matrix

$$\begin{pmatrix} 1 & 2.2 & 1 & 5.8 \\ 3 & 0 & 1 & 2 \\ 2 & 1.8 & 3 & 0.2 \end{pmatrix}$$

can be rounded to the matrix

$$\begin{pmatrix} 1 & 2 & 1 & 6 \\ 3 & 0 & 1 & 2 \\ 2 & 2 & 3 & 0 \end{pmatrix}.$$

Example 2: The matrix

$$\begin{pmatrix} 0.3 & 0.3 & 0.3 & 0.1 \\ 0.2 & 0.5 & 0.1 & 0.2 \\ 0.5 & 0.2 & 0.6 & 0.7 \end{pmatrix}$$

can be rounded to the matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$

Solution to problem 4	
Page 8 (of 8)	