
Midterm Exam, Advanced Algorithms 2018-2019

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

• You are allowed to refer to material covered in the lecture notes including
theorems without reproving them. You may also refer to statements given in the
exercise sheets and the homework sheet. You are however not allowed to refer to
material from any specific solution to these exercises.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

/ 20 points / 14 points / 22 points / 22 points / 22 points

Total / 100

Page 1 (of 10)

CS-450 Advanced Algorithms, Midterm Exam • Spring 2019
Ola Svensson

1 (20 pts) Duality of linear programming. Consider the following linear program:

Minimize 6x1 + 15x2 + 8x3

Subject to 2x1 + 6x2 + x3 ≥ 3

x1 + 2x2 + 3x3 ≥ 4

x1, x2, x3 ≥ 0

Write down its dual and the complementarity slackness conditions.

Solution: You will find the definition of the dual linear program in lecture notes 5. The dual
problem of the abovementioned primal is the following:

Maximize 3y1 + 4y2

Subject to 2y1 + y2 ≤ 6

6y1 + 2y2 ≤ 15

y1 + 3y2 ≤ 8

y1, y2 ≥ 0

In lecture notes 5, proposition 1.5 you will find the definition of complementary slackness. In
this particular case it is equivalent to saying that if (x1, x2, x3) and (y1, y2) are feasible solutions
to the primal and dual correspondingly, then :

(x1, x2, x3) is an optimal solution of the primal
(y1, y2) is an optimal solution of the dual

}
⇐⇒


x1 > 0 ⇒ 2y1 + y2 = 6
x2 > 0 ⇒ 6y1 + y2 = 15
x3 > 0 ⇒ y1 + 3y2 = 8
y1 > 0 ⇒ 2x1 + 6x2 + x3 = 3
y2 > 0 ⇒ x1 + 2x2 + 3x3 = 4

Page 2 (of 10)

CS-450 Advanced Algorithms, Midterm Exam • Spring 2019
Ola Svensson

2 (14 pts) Karger’s randomized algorithm for min-cut. In class, we saw Karger’s beautiful
randomized algorithm for finding a minimum cut in an undirected graph G = (V,E). Recall
that his algorithm works by repeatedly contracting a randomly selected edge until the graph
only consists of two vertices which define the returned cut. For general graphs, we showed that
the returned cut is a minimum cut with probability at least 1/

(
n
2

)
.

In this problem, we are going to analyze the algorithm in the special case when the input
graph is a tree. Specifically, you should show that if the input graph G = (V,E) is a spanning
tree, then Karger’s algorithm returns a minimum cut with probability 1.

(In this problem you are asked to show that Karger’s min-cut algorithm returns a minimum
cut with probability 1 if the input graph is a spanning tree. Recall that you are allowed to refer
to material covered in the lecture notes.)

Solution: Firstly notice that for a tree the minimum cut is of size one. It is enough to consider
S = {v} where v is any leaf node. As such it has only one edge connecting it to the rest of the
graph and the cut size is 1. Since a tree is connected there cannot be a 0-weight cut, so the
minimum cut indeed contains only one edge.

Now let’s prove that Karger’s algorithm always outputs a cut with only one edge. The
starting graph G = (V,E) is a tree, so it satisfies #E = #V − 1. At every step Karger’s
algorithm decreases the number of nodes by 1, and the number of edges by ≥ 1 (in case of
multiedges). At the end, since the starting graph is connected, we will end with ≥ 1 edges
between the two final nodes. Since the algorithm runs for #V − 2 steps, this means that it had
to remove exactly 1 edge at every step, and finish with exactly 1 edge between the two final
nodes in order to satisfy the above inequalities. It follows that the obtained cut will have weight
1, i.e. it will be a minimum cut. Note also that at every step of the algorithm the obtained
graph is still a tree, i.e. Karger’s algorithm preserves acyclicity. Since at the end we finish with
two nodes we know that there can be exactly one edge between them since the graph is a tree.

Page 3 (of 10)

CS-450 Advanced Algorithms, Midterm Exam • Spring 2019
Ola Svensson

3 (22 pts) Structure of extreme point solutions. In this problem, we consider a generalization
of the min-cost perfect matching problem. The generalization is called the min-cost perfect b-
matching problem and is defined as follows:

Input: A graph G = (V,E) with edge costs c : E → R and degree bounds b : V → {1, 2, . . . , n}.

Output: A subset F ⊆ E of minimum cost
∑

e∈F c(e) such that for each vertex v ∈ V :

• The number of edges incident to v in F equals b(v), i.e., |{e ∈ F : v ∈ e}| = b(v).

Note that min-cost perfect matching problem is the special case when b(v) = 1 for all v ∈ V . An
example with general b’s is as follows:

Input

u1

u2

v1

v2

b(u1) = 1

b(u2) = 2

b(v1) = 1

b(v2) = 2

Output

u1

u2

v1

v2

On the left, we illustrate the input graph with the degree bounds (the b’s). Thin and thick edges
have cost 1 and 2, respectively. On the right, we illustrate a solution of cost 1 + 1 + 2 = 4. It is a
feasible solution since the degree of each vertex v equals b(v) in the solution.

Your task is to prove the following statement: If the input graph G = (V,E) is bipartite then
any extreme point solution to the following linear programming relaxation (that has a variable
xe for every edge e ∈ E) is integral:

Minimize
∑
e∈E

c(e)xe

subject to
∑

e∈E:v∈e
xe = b(v) for all v ∈ V

0 ≤ xe ≤ 1 for all e ∈ E.

(In this problem you are asked to prove that every extreme point solution to the above linear
program is integral assuming that the input graph G is bipartite. Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution:
Let x∗ be an extreme point for the graph G = (V,E) and let Ef = {e ∈ E : 0 < x∗e < 1}.

Suppose towards contradiction that Ef 6= ∅. Note that Ef must then contain a cycle as b is
integral: indeed any vertex incident to an edge in Ef is incident to at least two edges in Ef .
Note that since G is bipartite, hence, the cycle has even length. Let e1, e2, ..., e2k be the edges of
the cycle. All these edges are fractional and we want to define y and z so that they are feasible
solutions and x∗ = 1

2(y + z) which will contradict the fact that x∗ is an extreme point. Let y, z
be

ye =


x∗e + ε if e ∈ {e1, e3, e5, ..., e2k−1}
x∗e − ε if e ∈ {e2, e4, e6, ..., e2k}
x∗e otherwise

Page 4 (of 10)

CS-450 Advanced Algorithms, Midterm Exam • Spring 2019
Ola Svensson

ze =


x∗e − ε if e ∈ {e1, e3, e5, ..., e2k−1}
x∗e + ε if e ∈ {e2, e4, e6, ..., e2k}
x∗e otherwise

Notice that the degree constraints are still satisfied by y and z as we are alternating between
increasing and decreasing the edge values in a cycle of even length. More formally suppose that
ei and ei+1 are the edges incident to v. Depending on parity of i we have yei = x∗ei + ε and
yei+1 = x∗ei+1

− ε. Or we have yei = x∗ei − ε and yei+1 = x∗ei+1
+ ε. Therefore degree constraints

still satisfied:∑
e∈E:v∈e

ye =
∑

e∈E:v∈e
x∗e = b(v), and∑

e∈E:v∈e
ze =

∑
e∈E:v∈e

x∗e = b(v)

Hence, to ensure feasibility, we need to choose such a small ε so as to guarantee that all ye and ze
are in [0, 1]. For example ε = min{x∗e, (1−x∗e) : e ∈ Ef} gives that both y and z are feasible. Now
one can easily see that x∗ = 1

2(y + z) which contradicts the assumption that x∗ is an extreme
point.

Page 5 (of 10)

CS-450 Advanced Algorithms, Midterm Exam • Spring 2019
Ola Svensson

4 (22 pts) Probabilistic analysis. Consider the following algorithm Random-Check that takes
as input two subsets S ⊆ E and T ⊆ E of the same ground set E.

Random-Check(S, T)

1. For each element e ∈ E, independently of other elements randomly set

xe =

{
1 with probability 1/3

0 with probability 2/3

2. if
∑

e∈S xe =
∑

e∈T xe then
3. return true
4. else
5. return false

Note that Random-Check(S, T) returns true with probability 1 if S = T . Your task is to ana-
lyze the probability that the algorithm returns true if S 6= T . Specifically prove that Random-
Check(S, T) returns true with probability at most 2/3 if S 6= T .

(In this problem you are asked to prove that Random-Check(S, T) returns true with proba-
bility at most 2/3 if S 6= T . Recall that you are allowed to refer to material covered in the lecture
notes.)

Solution: We solve the problem using "deferred decision" technique. First, note that simply
one has ∑

e∈S
xe =

∑
e∈S\T

xe +
∑

e∈S∩T
xe

and ∑
e∈T

xe =
∑

e∈T\S

xe +
∑

e∈T∩S
xe.

So, we have

Pr

[∑
e∈S

xe =
∑
e∈T

xe | S 6= T

]
= Pr

 ∑
e∈S\T

xe =
∑

e∈T\S

xe | S 6= T

 .
Note that since S 6= T , then (S \T)∪ (T \S) 6= ∅, and therefore ∃f ∈ (S \T)∪ (T \S). Without
lose of generality suppose that f ∈ (S \ T). Then,

Pr

 ∑
e∈S\T

xe =
∑

e∈T\S

xe | S 6= T

 = Pr

xf =
∑

e∈T\S

xe −
∑

e∈(S\T)\{f}

xe | S 6= T

 .
At this point, assume that we know that values of xe’s for all e ∈ E \ {f}, so c :=

∑
e∈T\S xe −∑

e∈(S\T)\{f} xe is fixed. We just need to note that Pr [xf = c|S 6= T] = Pr [xf = c] ≤ 2
3 for any

c ∈ R by assumption of the question (line 1 of Random-Check(S, T)). So, the claim holds.

Page 6 (of 10)

CS-450 Advanced Algorithms, Midterm Exam • Spring 2019
Ola Svensson

(This page is intentionally left blank.)

Page 7 (of 10)

CS-450 Advanced Algorithms, Midterm Exam • Spring 2019
Ola Svensson

5 (22 pts) Matroids. Design a polynomial-time algorithm for the matroid matching problem:

Input: A bipartite graph G = (A ∪B,E) and two matroidsMA = (A, IA),MB = (B, IB).

Output: A matching M ⊆ E of maximum cardinality satisfying:

(i) the vertices A′ = {a ∈ A : there is a b ∈ B such that {a, b} ∈M} of A that are
matched by M form an independent set inMA, i.e., A′ ∈ IA; and

(ii) the vertices B′ = {b ∈ B : there is an a ∈ A such that {a, b} ∈M} of B that are
matched by M form an independent set inMB, i.e., B′ ∈ IB.

We assume that the independence oracles for both matroidsMA andMB can be implemented
in polynomial-time. Also to your help you may use the following fact without proving it.

Fact (obtaining a new matroid by copying elements). Let M = (N, I) be a matroid
where N = {e1, . . . , en} consists of n elements. Now, for each i = 1, . . . , n, make ki copies of ei
to obtain the new ground set

N ′ = {e(1)1 , e
(2)
1 , . . . , e

(k1)
1 , e

(1)
2 , e

(2)
2 , . . . , e

(k2)
2 , . . . , e(1)n , e(2)n , . . . , e(kn)n } ,

where we denote the ki copies of ei by e
(1)
i , e

(2)
i , . . . , e

(ki)
i . Then (N ′, I ′) is a matroid where a

subset I ′ ⊆ N ′ is independent, i.e., I ′ ∈ I ′, if and only if the following conditions hold:

(i) I ′ contains at most one copy of each element, i.e., we have |I ′ ∩ {e(1)i , . . . , e
(ki)
i }| ≤ 1 for

each i = 1, . . . , n;

(ii) the original elements corresponding to the copies in I ′ form an independent set in I, i.e.,
if I ′ = {e(j1)i1

, e
(j2)
i2

, . . . , e
(j`)
i`
} then {ei1 , ei2 , . . . , ei`} ∈ I.

Moreover, if the independence oracle of (N, I) can be implemented in polynomial time, then
the independence oracle of (N ′, I ′) can be implemented in polynomial time.

(In this problem you are asked to design and analyze a polynomial-time algorithm for the
matroid matching problem. You are allowed to use the above fact without any proof and to
assume that all independence oracles can be implemented in polynomial time. Recall that you are
allowed to refer to material covered in the lecture notes.)

Solution: We use the given fact to create two matroids. First, using MA we create M′A as
follows: For a ∈ A, create copies a(b) for each b ∈ such that (a, b) ∈ E, and let M′A be the
matroid obtained fromMA using these new copies of vertices. Similarly obtainM′B fromMB

by copying each b ∈ B to get b(a)’s for each a such that (a, b) ∈ E. Notice that the ground set of
M′A has a one-to-one correspondence with E, and so do the ground set ofM′B. Thus, w.l.o.g.,
we can assume that both the matroidsM′A andM′B are defined on the common ground set E.

Now we can use matroid intersection, which runs in polynomial time, to find a maximum inde-
pendent set in the intersection of the two matroids (since we have polynomial-time independence
oracles for all the matroids we consider).

To see that this provides the required answer, note that any valid matching in two matroids
MA and MB correspond to an independent set in the intersection of M′A and M′B, and vice-
versa (this follows from the given fact).

Page 8 (of 10)

CS-450 Advanced Algorithms, Midterm Exam • Spring 2019
Ola Svensson

(This page is intentionally left blank.)

Page 9 (of 10)

CS-450 Advanced Algorithms, Midterm Exam • Spring 2019
Ola Svensson

