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ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Midterm Exam, Advanced Algorithms 2017-2018

e You are only allowed to have a handwritten A4 page written on both sides.
e Communication, calculators, cell phones, computers, etc... are not allowed.

e Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

e You are allowed to refer to material covered in the lecture notes including
theorems without reproving them. You may also refer to statements given in the
exercise sheets and the homework sheet. You are however not allowed to refer to
material from any specific solution to these exercises.

e Do not touch until the start of the exam.
Good luck!

Name: N° Sciper:

Problem 1 | Problem 2 | Problem 3 | Problem 4 | Problem 5

/ 20 points | / 20 points | / 20 points | / 20 points | / 20 points

Total / 100
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1 (consisting of subproblems a-b, 20 pts) Basic questions. This problem consists of two subprob-
lems each worth 10 points.

la (10 pts) Suppose we use the Simplex method to solve the following linear program:

maximize 4x1 — x9 — 223
subject to r1—x3+s1 =1
r1+s9o=4

—3x9+2x3+s3=4

x1, T2, T3, S1, S2, $3 >0
At the current step, we have the following Simplex tableau:

1 =1+mx3— 351
So =3 —x3+ S|
53:4+3£L'2—2£L'3

z2=4— 19+ 2x3 — 451

Write the tableau obtained by executing one iteration (pivot) of the Simplex method start-
ing from the above tableau.

Solution:

Only x3 has a positive coefficient in z, we will pivot 3. We have 23 — z3 < oo (1), x5 <
3 (2), z3 < 2 (3), Thus we use third equality to pivot z3. Hence z3 = 3(4 + 3z2 — s3). And we
get

1
$1:1+§(4+3IL‘2—83)—81

1
82:3—5(4+3$2—S3)+81

1
3 = 5(4 + 3z — s3)

z2=4—x9+4 (44329 — s3) — 451

That is

3.%2 S3
.21?1:34-7—5—81

3%2 S3
52:1—7-1-54‘31

31’2 S3

=92 - - =

z3 + 5 5

z =84 2x9 + —53 — 487

T1:=3220:=023: =258 :=058:=1s53:=0
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1b (10 pts) Chef Baker Buttersweet just took over his family business - baking tasty cakes!
He notices that he has m different ingredients in various quantities. In particular, he has
b; > 0 kilograms of ingredient ¢ for ¢« = 1,...,m. His family cookbook has recipes for n
types of mouthwatering cakes. A kilogram of cake of type j is worth ¢; CHF. For each
recipe 7, the cookbook says how many kilograms of each of the ingredients are needed to
make one kilogram of cake of type j. One kilogram of cake of type j, for j = 1,...,m,
needs precisely a;; kilograms of ingredient 4 for all i = 1,...,m.

Chef wants to make x; < 1 kilograms of cake of type j. Having studied linear programming,
he knows that the maximum revenue he can get is given by the following linear program,
where A € RT"" | b e R} and ¢ € RY.

n
Maximize E cjTj
7=1

subject to Ax <b
1>2;>0 Vi

Chef realizes that he can use Hedge algorithm to solve this linear program (approximately)
(t)

but he is struggling with how to set the costs m,

these costs properly.

at each iteration. Explain how to set

(®)

(In this problem you are asked to define the costs m;”. You do not need to explain how to
solve the reduced linear program that has a single constraint. Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution: Here we give a detailed explanation of how to set the costs. Your solution does not
need to contain such a detailed explanation.

The idea of using the Hedge method for linear programming is to associate an expert with
each constraint of the LP. In other words, the Hedge method will maintain a weight distribution
over the set of constraints of a linear problem to solve, and to iteratively update those weights
in a multiplicative manner based on the cost function at each step.

Initially, the Hedge method will give a weight wZ(l) = 1 for every constraint/expert i =
1,...,m (the number m of constraints now equals the number of experts). And at each step
t, it will maintain a convex combination p*) of the constraints (that is defined in terms of the
weights). Using such a convex combination p, a natural easier LP with a single constraint is
obtained by summing up all the constraints according to p. Any optimal solution of the original
LP is also a solution of this reduced problem, so the new problem will have at least the same
cost as the previous one. We define an oracle for solving this reduced problem:

Definition 1 An oracle that, given p = (p1,...,pm) > 0 such that 3", p; = 1, oulputs an
optimal solution x* to the following reduced linear problem:

Maximize g CjT;

j=1
m m
subject to (Z py‘h’) cx < Zpibi
i=1 i=1
z>0
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As explained, we associate an expert to each constraint of the covering LP. In addition,
we wish to increase the weight of unsatisfied constraints and decrease the weight of satisfied
constraints (in a smooth manner depending on the size of the violation or the slack). The Hedge
algorithm for covering LPs thus becomes:

(1)

e Assign each constraint ¢ a weight w, ’ initialized to 1.

At each time ¢:

e Pick the distribution pgt) = wgt)/q)(t) where &) = >iclN] wz(t)'

o Now we define the cost vector instead of the adversary as follows:

— Let 2® be the solution returned by the oracle on the LP obtained by using the convex
combination p* of constraints. Notice that cost of z®), i.e., ¢'2®, is at least the
cost of an optimal solution to the original LP.

— Define the cost of constraint i as

mgt) = bi — ZAU{BJ = bi — A,‘.%'.
7=1

Notice that we have a positive cost if the constraint is satisfied (so the weight will
be decreased by Hedge) and a negative cost if it is violated (so the weight will be
increased by Hedge).

(t+1) _ (0

. (t)
o After observing the cost vector, set w, ey

- €

Output: the average z = % Z?:l x® of the constructed solutions.
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(Primal) LP Relaxation (Dual)

minimize Z e(S)zs maximize Z Ye
SeT ecU
subject to Z xg>1 foreel subject to Zye <¢(S) for SeT
SeT:eeS eesS
g >0 forSeT Ye >0 forecl

Figure 1. The standard LP relaxation of set cover and its dual.

2 (20 pts) Recall that a set cover instance is specified by a universe U = {ey,...,en}, a family of
subsets 7, and a cost function ¢ : 7 — R,. The task is to find a collection C' C T of subsets of
minimum total cost that covers all elements. The natural LP relaxation and its dual (as seen in
class) are given in Figure

In the homework, we analyzed a primal-dual algorithm for vertex cover. In this problem
you should design and analyze a primal-dual algorithm for set cover that has an approxi-
mation guarantee of f, where f is the maximum number of sets any element belongs to:
f = maxecy |{S € T : e € S}|. In other words, you should prove that your primal-dual al-
gorithm returns a set cover of weight at most f times the weight of an optimal solution.

(In this problem you are asked to (i) design the primal-dual algorithm and (ii) show that it
has an approzimation guarantee of f. We remark that an answer that solves and rounds the LP
relaxation is rewarded 0 points. Recall that you are allowed to refer to material covered in the
lecture notes.)

Solution: We present the following primal-dual algorithm which maintains a feasible dual solu-
tion, and eventually constructs a feasible primal solution.

1. Initialize the dual solution y to be y. = 0 for every e € U.
2. While C ={S €T :) cq¥e = c(S)} is not a set cover (i.e., UsecS # U):

e Select an element e € U that is not covered by any set in C' (i.e., choose
an element e € U \ (UsecS).

e Increase y. until one of the dual constraints becomes tight (i.e., > cq¥e =
¢(S) for some S ¢ C).

3. Return C ={S €T :) gy =c(5)}

This algorithm terminates because, in each iteration of the loop, a new element e € U becomes
covered. Therefore there may be at most n iterations.

Note that, by construction, the output C is a set cover and the computed dual solution is
feasible. Let y be the dual solution when the primal-dual algorithm terminates. We have the
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following;:

Z c(S) = Z Z Ye (by the definition of set C)
SeC SeC ecS
< Z Z Ye (because y,’s are non-negative and C' C T)
SET ecS
= Z Z Ye (by rearranging the summations)
eclU S3e
=> {SeT:ecS} ye
ecU
Sf.eze;ye (f:IEE%(‘{SGT:QES}D
< f-LPopr (by the weak-duality theorem)
< f-OPT. (because the LP is a relaxation)
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3 (20 pts) LP-based algorithm for packing knapsacks. Homer, Marge, and Lisa Simpson
have decided to go for a hike in the beautiful Swiss Alps. Homer has greatly surpassed Marge’s
expectations and carefully prepared to bring n items whose total size equals the capacity of his
and his wife Marge’s two knapsacks. Lisa does not carry a knapsack due to her young age.

More formally, Homer and Marge each have a knapsack of capacity C, there are n items where
item ¢ = 1,2,...,n has size s; > 0, and we have > ' | s; = 2- C due to Homer’s meticulous
preparation. However, being Homer after all, Homer has missed one thing: although the items
fit perfectly in the two knapsacks fractionally, it might be impossible to pack them because items
must be assigned integrally!

Luckily Lisa has studied linear programming and she saves the family holiday by proposing
the following solution:

e Take any extreme point x* of the linear program:

rig+xim <1 for all items ¢ =1,2,...,n

n
Z S — C
i=1

n
Z SiTip — C
i=1

0<xz; <1 for all items i =1,2,...,nand j € {H, M}.
e Divide the items as follows:

— Homer and Marge will carry the items {i : 2}, = 1} and {i : 2}, = 1}, respectively.

— Lisa will carry any remaining items.

Prove that Lisa needs to carry at most one item.

(In this problem you are asked to give a formal proof of the statement that Lisa needs to carry
at most one item. You are not allowed to change Lisa’s solution for dividing the items among the
family members. Recall that you are allowed to refer to material covered in the lecture notes.)

Solution:
Note that, if z is a feasible solution, x;g + x;ps = 1 for all ¢ = 1,...,n. Otherwise, if
zjg + xjm < 1, we would have that (since s; > 0 for every item 1)

n n n n
2.C:ZsixiH+ZsixiM:sj(xjH—i—ij)—i— Z Si(xiH+xiM)<ZSi:2-C,

i=1 i=1 pe i=1,i#j RS i=1

which is a contradiction.

Now suppose that z* is an extreme-point solution. We claim that 0 < z7;; < 1 for at most
one index ¢. Suppose that 0 < x5 < 1 is true for more than one index 4. If so, we show that z*
can be written as a convex combination of two other feasible solutions, and hence x* is not an
extreme point, contradicting our choice of z*. Assume 0 < z7;; < 1 and 0 < ziy <1 for i # j.
Since x; + xim = 1 and x5 + x;)7 = 1, this also implies that 0 < 27, <1 and 0 < l‘;M < 1.
Now consider the solutions

1 * * * * * S * S * *

2 = (le,le,...,xiH—l—e,a:iM—e,...,xjH—e<s—;_> ,:ch—l—e(S—;) ,...,an,ng) and
2) * * * * * S; * S * *

2@ = (mlH,le,...,xl-H—e,aEiM+e,...,xjH+e<s—;),ijfe<8—;),...,an,ng).
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We select € > 0 to be small enough so that all the values z};; L€, x7;, %€, x;Hie (j—;) Mie (57 )
stay in the range [0,1] (note that, since s; > 0 and s; > 0, 0 < i—; < 00). As shown below, we

can verify that the solutions (1) and z(®) both satisfy the LP constraints, and hence are feasible
solutions. For 2(1), we have that

g ST 1H—ZS$1H_31€+SJ ( ) g sixig =C
and
n
S; . % 70
E:sz Tivg = Zsz Ty + Si€ — 5 _ZsixiM_ .
J i=1

1 () _ o« * _ 1 .1 i i) —
Furthermore, for x,;; +x,,; = oy +x),+e—€ =1, T taiy = Ty ta —e€ (?—J) +e (i—J) =1,
and for k # ¢ and k # j, x(l) + a:( ) = xyy + x5, = 1. By a similar argument, we can show
that z(?) is also feasible.

It is easy to see that z* =W 4+ x( ) and (M) £ 2*, and hence, z* is not an extreme point.
O
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4 (20 pts) Balancing degrees. A beautiful result by the Swiss mathematician Leonhard Euler
(1707 - 1783) can be stated as follows:

Let G = (V, E) be an undirected graph. If every vertex has an even degree, then we can
orient the edges in F to obtain a directed graph where the in-degree of each vertex equals
its out-degree.

In this problem, we address the problem of correcting an imperfect orientation A to a perfect
one A’ by flipping the orientation of the fewest possible edges. The formal problem statement is
as follows:

Input: An undirected graph G = (V, FE)) where every vertex has an even degree and an orienta-
tion A of E. That is, for every {u,v} € E, A either contains the directed edge (u,v) that
is oriented towards v or the directed edge (v,u) that is oriented towards u.

Output: An orientation A’ of E such that |A"\ A| is minimized and
HueV:(uv)e A =HueV:(vu) e A} for every v € V.

in-degree out-degree
Design and analyze a polynomial-time algorithm for the above problem.
(In this problem you are asked to (i) design the algorithm, (ii) analyze its running time, and

(iii) show that it returns a correct solution. Recall that you are allowed to refer to material cov-
ered in the lecture notes.)

An example is as follows:

G A= {(a’b)’(va)v(cvd)v(dva)} A= {(a,b),(b,c),(c,d),(d,a)}

The solution A" has value |A’\ A| =1 (the number of edges for which the orientation was flipped).

Solution: Consider the directed graph G’ = (V, E’) obtained from G by replacing every edge
{u,v} € E by the two arcs e; = (u,v) and e3 = (v,u). If e € A’, we assign weight w, = n? + 1

to it, otherwise we set w, = n?.

Let 67 (v) = {u € V : (v,u) € E'} denote the set of outgoing edges of v in G’ and §~ (v) =
{u €V :(u,v) € E'} be the set of incoming edges of v in G'. With the arc set E’ as ground set
we define two partition matroids My and Mas:

e To be independent in M one can take at most one of {(u,v), (v,u)} for every {u,v} € E,
ie.,

Ty ={F CE:|[Fn{(u,v),(v,u)}| <1 for all {u,v} € E}.

This matroid enforces the constraint that each edge should be oriented in one direction.
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e To be independent in M,, one can take at most fdeg(v) arcs among the set 6+ (v) of
outgoing arcs for every v:

1
Iy={FCFE:|[Fnét(v)| < ideg(v), forallve V}.

Let solution .S be the maximum weight independent set in the intersection of the two matroids
My, and Ms. Now we prove that a solution S is feasible if and only if it is independent in both
Il and IQ.

First observe that any solution with maximum weight, also has the maximum cardinality.
Every solution of size k has weight at most k - (n? + 1), whereas any solution of size k + 1 has
weight at least (k+ 1)n? which is larger than any solution of size at most k. Thus the maximum
weighted solution has maximum size i.e. |A’|.

Now we prove that any solution (with maximum cardinality) that is independent in Zs,
satisfies both indegree and outdegree constraints. Suppose F' C Zy and |F| = |A’|. Thus we have

4= S IF st ) < Y Sdea(v) = |4

veV veV

Thus for all v € V, we have |F N7 (v)| = Sdeg(v), so that |[F N~ (v)| = 3deg(v). Thus F
is a feasible solution to the problem.

Recall that solution S has the maximum weight among all feasible solutions. Thus S has
maximum cardinality, and among all the feasible solutions with the same cardinality, S maximizes
|[E' N A’|. By Edmonds, Lawler’s theorem, there is a polynomial-time algorithm for finding a
maximum weight independent set in the intersection of two matroids My, and Mas.
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5 (20 pts) Comparing algorithms with little communication. Two excellent students, Alice
from EPFL and Bob from MIT, have both built their own spam filters. A spam filter is an
algorithm that takes as input an email and outputs 1 if the email is spam and 0 otherwise. Alice
and Bob now want to compare their two spam filters.

To perform the comparison, they both download the same huge data set consisting of n
emails out of which some are spam. Alice then runs her spam filter on the data set to obtain
a,az,...,a, where a; € {0, 1} is the output of her spam filter on the i:th email in the data set.
Similarly, Bob runs his spam filter on the data set to obtain by, ba,...,b, where b; € {0,1} is
the output of his spam filter on the ¢:th email in the data set. Their goal is then to determine
whether their outputs are the same.

An issue that they face is that ay,as,...,a, are stored on Alice’s computer and by, bo, ..., b,
are stored on Bob’s computer. They thus need to transfer (or communicate) information to solve
the problem. A trivial solution is for Alice to transfer all her outputs aq, as,...,a, to Bob who
then performs the comparison. However, this requires Alice to send n bits of information to Bob;
an operation that is very costly for a huge data set. In the following, we use randomization to
achieve a huge improvement on the number of bits transfered between Alice and Bob.

Specifically, motivated by something called pseudo-random generators, we assume that Alice
and Bob have access to the same randomness (called shared randomness). That is, Alice and
Bob have access to the same infinite stream of random bits r, 79, .. ..

Your task is now to use this shared randomness to devise a randomized protocol of the
following type:

e As a function of ay,as,...,a, and the random bits r{, 79, ..., Alice computes a message m
that consists of only 2 bits. She then transmits this 2-bit message m to Bob.

e Bob then, as a function of by, bo,...,b,, the message m, and the random bits r1,79,.. .,
outputs EQUAL or NOT EQUAL.

Bob’s output is correct if he outputs EQUAL when a; = b; for all i € {1,...,n} and NOoT EQUAL
otherwise. Your protocol should ensure that Bob outputs the correct answer with probability at
least 2/3, where the probability is over the random bits r1,79, .. ..

(In this problem you are asked to (i) explain how Alice computes the message m of 2 bits (ii)
explain how Bob calculates his output, and (iii) prove that Bob’s output is correct with probability
at least 2/3. A correct solution where Alice sends a message m of O(logn) bits is rewarded 12
points. Recall that you are allowed to refer to material covered in the lecture notes.)

An interesting fact (but unrelated to the exam) is that any correct deterministic strategy would require
Alice and Bob to send n bits of information.

Solution: Let a = (a1,...,a,) and b = (by,...,b,). Alice generates two independent random
vectors r!,r? ~ Uniform({0,1}") using the shared random bits. Note that this is equivalent to
choosing each element of r! and r? independently and uniformly at random from {0,1}. Alice
then computes 71 = (a,r!) mod 2 and x5 = (a,r?) mod 2, and transmits (x1, x2) to Bob. Bob uses
the shared random bits to generate the same vectors r! and r?, and computes y; = (b, r!) mod 2
and y2 = (b,r?) mod2. If z1 = y; and x5 = y2, Bob outputs EQUAL. Otherwise, Bob outputs
NotT EQUAL.

We prove that the above protocol succeeds with probability at least 2/3. Clearly, it succeeds
whenever a = b. Thus, we only have to show that it succeeds with probability at least 2/3 when
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a # b. We first show that Prz; = yi|a # b] = 1/2. Notice that

Prz; = y1|a # b] = Pr[(a,r') mod 2 = (b, r!) mod 2|a # b]
= Pr[{(a — b, r') mod 2 = 0|a # b.
Let ¢ = a — b. Since a # b, we have that ¢ # 0. This means that for at least one index j,
¢j = 1. Now fix such j, and suppose that we have chosen all elements r} for i # j independently

and uniformly at random from {0, 1}. Then, there will be only one choice for 7’]1- that would make
(c,r') = 0. Thus, using the principle of deferred decisions, we have that

Pr[(c,r!) mod2 = 0]a # b] = Pr[(a — b, r') mod 2 = O|a # b] = 1/2.
As a result, Prfz; = yi|la # b] = 1/2, and similarly, Pr[z2 = y2|a # b] = 1/2. Since r! and

r? are independent from each other, Pr[(x1,z2) = (y1,¥2)]a # b] = (1/2) - (1/2) = 1/4, which
implies that Pr[(z1,x2) # (y1,y2)]a # b] =1 —1/4 > 2/3 as required. O
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