
Advanced Algorithms October 29, 2024

Lecture 11: Hedging for LPs and Intro to Randomized Algorithms
Notes by Ola Svensson1

In this lecture we first show how to solve covering LPs approximately using the Hedge algorithm.
We then give an introduction to randomized algorithms.

1 Hedging for LPs

We now turn to a nice application of the Hedge method to that of solving covering LPs. We start by
defining these LPs.

1.1 Covering LPs

Definition 1 A linear program of the form :

minimize
n∑

j=1

cjxj

subject to Ax ≥ b

1 ≥ xj ≥ 0 ∀j

is a covering linear program if

A ∈ Rm×n
+ , b ∈ Rm

+ and c ∈ Rn
+

This definition simply ensures that all the coefficients of the constraints and of the objective function
are non-negative. Notice that both the set cover relaxation and the vertex cover relaxation that we saw
in class were covering LPs.
Let us now introduce an example of a covering LP that we will reuse later:

minimize x1 + 2x2 (1)

subject to x1 + 3x2 ≥ 2

2x1 + x2 ≥ 1

1 ≥ x1, x2 ≥ 0

1.2 General idea

The idea of using the Hedge method for linear programming is to associate an expert with each con-
straint of the LP. In other words, the Hedge method will maintain a weight distribution over the set
of constraints of a linear problem to solve, and to iteratively update those weights in a multiplicative
manner based on the cost function at each step/day. Of course we need to define the cost function in
a smart way later but let us first define the notion of an oracle and then give a small instructive example.

Initially, the Hedge method will give a weight w(1)
i = 1 for every constraint/expert i = 1, . . . ,m

(the number m of constraints now equals the number of experts). And at each day t, it will maintain a

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.
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convex combination p⃗(t) of the constraints (that is defined in terms of the weights). Using such a convex
combination p⃗, a natural easier LP with a single constraint is obtained by summing up all the constraints
according to p⃗. Any optimal solution of the original LP is also a solution of this reduced problem, so
the new problem will have at most the same cost as the previous one. We define an oracle for solving
this reduced problem:

Definition 2 An oracle that, given p⃗ = (p1, . . . , pm) ≥ 0 such that
∑m

i=1 pi = 1, outputs an optimal
solution x∗ to the following reduced linear problem:

minimize
n∑

j=1

cjxj

subject to

(
m∑
i=1

piAi

)
· x ≥

m∑
i=1

pibi

1 ≥ x ≥ 0

This linear problem is in practice much easier to solve than the original one and we can design a simple
greedy algorithm for the oracle.
For concreteness, let us consider a small example. If we apply the method we described to our

example (1), we have two initial weights w1 = w2 = 1 and thus p1 = p2 = 1
2 , and we sum all the

constraints:

p1(x1 + 3x2) + p2(2x1 + x2) ≥ p1 · 2 + p2 · 1 ⇔

1.5x1 + 2x2 ≥ 1.5

1 ≥ x1, x2 ≥ 0

By using the oracle, an optimal solution to this reduced problem is x1 = 1, x2 = 0 of cost 1. But is this
a feasible solution to our original problem? By checking the constraints of the original LP:

2x1 + x2 = 2 ≥ 1 OK

x1 + 3x2 = 1 < 2 not OK

We will need to go back to the original problem and increase the weights of the unsatisfied constraints to
give them more importance and decrease the weights of the satisfied constraint. We will perform these
updates (as done by Hedge) multiplicatively that we describe in detail in Section 1.4. We first describe
how to implement the oracle in general.

1.3 Implementation of the oracle

The oracle is given an objective function minimize
∑n

i=1 cixi and only one constraint that we can
rewrite as

∑n
i=1 di xi ≥ b (which is the weighted sum of all constraints). We also have 1 ≥ xi ≥ 0 ∀i and

ci, di ≥ 0 ∀i since it is a covering problem.
The idea is to assign the maximum value (namely 1) to the variables that have the highest ratio

constraint coefficient/objective coefficient. That way we will satisfy the constraint as fast as possible
while maintaining a small objective function. Then assign zero to the other variables and possibly an
intermediate value for the variable that is at the limit to make the constraint satisfied. This is very
similar to the most “bang-for-the-buck” greedy and it is the solution to fractional knapsack. Formally:

• Sort and relabel all variables xi so that d1/c1 ≥ d2/c2 ≥ . . . dn/cn.
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• Let k = min{j :
∑j

i=1 di ≥ b} and ℓ = b−
∑k−1

i=1 di.

• Set xi := 1 for i = 1, ..., k − 1.

• Set xk := ℓ/dk.

• Set xi := 0 for i = k + 1, ..., n.

We have,
n∑

i=1

di xi =

n∑
i=1

di xi =

k−1∑
i=1

di xi + dk xσ(k) +

n∑
i=k+1

di xi =

k−1∑
i=1

di + ℓ = b

Therefore the constraint is exactly satisfied. By the ordering of the variables, this ensures that we
minimize the objective function as required. Having implemented the oracle, we proceed to formally
define the Hedge algorithm for linear programming.

1.4 Hedge algorithm for covering LPs

As already explained, we associate an expert to each constraint of the covering LP. In addition, as
hinted above, we wish to increase the weight of unsatisfied constraints and decrease the weight of
satisfied constraints (in a smooth manner depending on the size of the violation or the slack). The
Hedge algorithm for covering LPs thus becomes:

• Assign each constraint i a weight w(1)
i initialized to 1.

At each time t:

• Pick the distribution p(t)i = w
(t)
i /Φ(t) where Φ(t) =

∑
i∈[N ] w

(t)
i .

• Now we define the cost vector instead of the adversary as follows:

– Let x(t) be the solution returned by the oracle on the LP obtained by using the convex
combination p⃗(t) of constraints. Notice that cost of x(t), i.e., c⊤x(t), is at most the cost of an
optimal solution to the original LP.

– Define the cost of constraint i as

m
(t)
i =

n∑
j=1

Aijxj − bi = Aix− bi.

Notice that we have a positive cost if the constraint is satisfied (so the weight will be decreased
by Hedge) and a negative cost if it is violated (so the weight will be increased by Hedge).

• After observing the cost vector, set w(t+1)
i = w

(t)
i · e−ε·m(t)

i .

Output: the average x̄ = 1
T

∑T
t=1 x

(t) of the constructed solutions.

Analysis. Since the analysis for the Hedge algorithm works with an adversarial construction of the
cost vectors, it definitely holds for the cost vectors we constructed. Let

ρ = max
1≤i≤m

{max(bi, Ai1− bi)} ,

be (an upper bound on) the width of our constructed cost vectors. We use
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Corollary 3 Suppose ϵ ≤ 1 and for t ∈ [T ], p⃗(t) is picked by Hedge and cost vectors satisfy m⃗(t) ∈
[−ρ, ρ]N . If T ≥ (4ρ2 lnN)/ϵ2, then for any expert i:

1

T

T∑
t=1

p⃗(t) · m⃗(t) ≤ 1

T

T∑
t=1

m
(t)
i + 2ϵ .

By Corollary 3, we thus have for ϵ ∈ [0, 1], T ≥ (4ρ2 lnm)/ϵ2 and any constraint i that

1

T

T∑
t=1

p⃗(t) · m⃗(t) ≤ 1

T

T∑
t=1

m
(t)
i + 2ϵ . (2)

Let us first consider the left-hand-side of the above expression. We have that

T∑
t=1

p⃗(t) · m⃗(t) =

T∑
t=1

(∑
i

p
(t)
i ·m(t)

i

)

=

T∑
t=1


∑
i

p
(t)
i · (Aix

(t) − bi)︸ ︷︷ ︸
(∗)


which is non-negative because (∗) is non-negative for every t since the oracle outputs a feasible solution.
Using that the left-hand-side of (2) is non-negative, we get

−2ϵ ≤ 1

T

T∑
t=1

m
(t)
i =

1

T

T∑
t=1

(
Aix

(t) − bi

)
= Aix̄− bi

which implies that

Aix̄ ≥ bi − 2ϵ ,

for every constraint i. So our solution x̄ is almost feasible. Moreover the cost c⊤x̄ = c⊤( 1
T

∑
t∈[T ] x

(t))

is at most the cost of an optimal solution to the original LP since each x(t) has no higher cost than
an optimal solution (by the properties of the oracle).

Setting the parameters for solving the set cover relaxation. For set cover we have that ρ ≤ n
and therefore, it is sufficient to set T = (4n2 lnm)/ϵ2 (this can in fact be improved by a better analysis
to ≈ n lnm/ϵ2). This gives a solution x̄ that satisfies

∑
e∈S xe ≥ 1− 2ϵ for every set S and the cost of

x̄ is at most that of an optimal LP solution. We can obtain a feasible (approximately optimal) solution
by simply defining x∗ = 1

1−2ϵ x̄.

2 Introduction to Randomized Algorithms

Deterministic algorithms take input and produce output. In Randomized Algorithms, in addition to
input algorithms take a source of random bits and makes random choices during execution - which leads
behavior to vary even on a fixed input. For many problems a randomized algorithm is the simplest or
fastest or both.
Let p > 0 be the probability that a (randomized) algorithm generates the correct (optimal) solution.

It turns out that, even if p is much smaller than 1 we can obtain an algorithm with that succeeds with
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high probability just by executing the original algorithm independently many times. In particular, if we
run the original algorithm k times, the probability that at least one copy succeeds is at least 1− (1−p)k.
For small values of p one can always approximate 1 − p with e−p, and during this course we always
use such an approximation. It follows that for k = 100/p, at least one copy finds the correct (optimal)
solution with probability at least

1− e−pk = 1− e−100.

In other words, even if we have an algorithm with a small probability of success we can boost the success
probability to a number very close to 1.
In this lecture, we describe a randomized algorithm for the minimum cut problem. Let us start with

the definition of minimum cut problem. Let G = (V,E) be a graph with n = |V | vertices. Let

E(S, S) := {(u, v) : u ∈ S, v /∈ S},

be the set of edges that have exactly one endpoint in S. In the minimum cut problem, we want to
partition the into two subsets which are joined together with minimum number of edges, i.e.,

min
∅⊂S⊂V

|E(S, S)|.

3 Karger’s Algorithm

In this lecture we will discuss Karger’s [Kar93] algorithm for the minimum cut problem. We will show
that the it finds a minimum cut in time O(n4 log n) with high probability.
Before describing these algorithms, let us define a contraction procedure. Contraction of an edge

(u, v) in G, merges the endpoints u and v to create a new (super) node uv. This reduces the total
number of nodes in the graph by 1. All other edges which were previously attached to u or v are
attached to the new (super) node uv. Note that this might lead to multiple parallel edges; in particular,
if a node z has a edges to u and b edges to v, after contraction it will have a+ b edges to uv.
When we contract u, v we just remove the edge connecting u to v from the graph; in other words,

we do not include the loops.
Let k be the size of the minimum cut of G; fix a minimum cut (S∗, S∗). In this section we design an

algorithm that finds (S∗, S∗) with probability at least 1/
(
n
2

)
.

Let us start by describing the main idea. Suppose we choose a uniformly random edge e in G. What
is the probability that e ∈ E(S∗, S∗)?

Claim 4 The probability that a uniformly random edge is in E(S∗, S∗) is at most 2/n.

Proof Let e be a uniformly random edge in G. Obviously,

P
[
e ∈ E(S∗, S∗)

]
=

|E(S∗, S∗)|
|E|

=
k

|E|
.

To give an upper bound we need to lower bound |E|. Here we use the hand-shake lemma. Let d(v) be
the degree of a vertex v. The hand-shake lemma says that in any graph G,∑

v∈V

d(v) = 2|E|.

This is because in the LHS we count each edge twice. Now, we can lower bound d(v) for any vertex v
by k. This is because, for any v,

d(v) = |E({v}, {v})| ≥ k.
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In other words, the size of the cut separating v from the rest of the graph is at least k. It follows from
the above two equations that |E| ≥ nk/2. So,

P
[
e ∈ E(S∗, S∗)

]
=

k

|E|
≤ k

nk/2
=

2

n
.

Using the above lemma if we choose n/4 edges of G uniformly at random with probability 1/2 none
of them is in the min-cut (S∗, S∗). Now, we can contract these n/4 edges. The new graph will have
at most 3n/4 vertices and we can recurse. After O(log n) steps, we get to a graph with just two super
nodes. With probability at least (1/2)O(logn) we do not contract any of the edges of (S∗, S∗) throughout
the process. So, the size of the cut separating the final two super-nodes is exactly k. In fact, one of
these two super-nodes corresponds to S∗ being contracted and the other one corresponds to S∗.
In above we described the gist of the idea of Karger’s algorithm. There are several missing points in

the above description. First of all, when we recursively call the algorithm, we are recursively using the
above claim. So, we need to make sure the size of the min-cut of G does not decrease when we contract
an edge.

Fact 5 For any graph G, when we contract an edge (u, v) the size of the minimum cut does not decrease.

We leave the proof of the above fact as an exercise.
Secondly, when we choose n/4 edges uniformly at random many of them may be parallel, so after

contraction the number of vertices of G may go down only by 1. To avoid running into these special
cases, it suffices to contract edges one by one. That is, each time we choose a uniformly random edge of
G and we contract it.

Algorithm 1 Karger’s Algorithm
for i = 1 → n− 2 do
Choose a uniformly random edge (u, v) and contract it, i.e., remove u, v, add a new node uv,

connect all edges that go to u or v to the new node uv, also remove all loops.
end for
Return the number edges between the final two super-nodes as the size of the min-cut.

Theorem 6 For any graph G = (V,E) with n nodes and any min-cut (S∗, S∗), Algorithm 1 returns
(S∗, S∗) with probability at least 2

n(n−1) .

Proof Let, Ai be the event that the edge picked in step i of the loop is not in E(S∗, S∗). Observe
that the algorithm succeeds in finding (S∗, S∗) if A1, A2, . . . , An−2 occur, i.e., if we never contract an
edge of E(S∗, S∗). So, we just need to lower bound P [A1, A2, . . . , An−2]. By Bayes rule we have,

P [A1, . . . , An−2] = P [A1]P [A2|A1]P [A3|A1, A2] . . .P [An−2|A1, A2, . . . , An−3] .

Now, by Theorem 4 and Theorem 5, for all i,

P [Ai|A1, . . . , Ai−1] ≥ 1− 2

n− i+ 1
.

Therefore,

P [A1, . . . , An−2] ≥
(
1− 2

n

)(
1− 2

n− 1

)
. . .

(
1− 2

3

)
=

n− 2

n
· n− 3

n− 1
· n− 4

n− 2
. . .

3

5
· 2
4
· 1
3

=
2

n(n− 1)
= 1/

(
n

2

)
.
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The following corollary is immediate from the above theorem.

Corollary 7 Any graph has at most
(
n
2

)
min-cuts.

Proof Suppose there is a graph G that has more than
(
n
2

)
min-cuts. Then, for one of those cuts, say

(S, S) the probability that Algorithm 1, finds (S, S) is less than 1/
(
n
2

)
. But, this is a contradiction.

In fact, the above bound is tight: you will give an example showing that it is tight in the exercise
session.

Runtime and Boosting Probability of Success. It is not hard to see that one can run Algorithm
1 in time O(n2), but as we proved above the success probability of each execution is just O(1/n2). Using
the boosting idea, we can boost the probability of success to 1−1/n by running O(n2 log n) independent
copies of the above algorithm and returning the best cut that any of the copies find.
Note that, running Karger’s algorithm n2 log n times produces a min cut with high probability; but

this way we have to spend time O(n4 log n) to find the min-cut. In the next lecture we will describe a
much faster algorithm due to Karger and Stein.
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