
Exercise Set IX, Advanced Algorithms 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 Professor Ueli von Gruyères has worked intensely throughout his career to get a good estimator
of the yearly consumption of cheese in Switzerland. Recently, he had a true breakthrough. He
was able to design an incredibly efficient randomized algorithm A that outputs a random value
X satisfying

E[X] = c and Var[X] = c2 ,

where c is the (unknown) yearly consumption of cheese in Switzerland. In other words, A is an
unbiased estimator of c with variance c2.

Use Ueli von Gruyères’ algorithm A to design an algorithm that outputs a random value Y
with the following guarantee:

Pr[|Y − c| ≥ εc] ≤ δ where ε > 0 and δ > 0 are small constants. (1)

Your algorithm should increase the resource requirements (its running time and space usage) by
at most a factor O(1/ε2 · log(1/δ)) compared to the requirements of A.

(In this problem you are asked to (i) design the algorithm using A, (ii) show that it satisfies
the guarantee (1), and (iii) analyze how much the resource requirements increase compared to
that of simply running A. Recall that you are allowed to refer to material covered in the course.)

Solution: The idea of the algorithm is to first decrease the variance by taking the average of
t = 10/ε2 independent runs of A. We then do the median trick. Formally, consider the algorithm
B that runs t independent copies of A and then outputs the average of the t estimates obtained
from the independent runs of A. Let B be the random output of this algorithm. As seen in class,
we have E[B] = c (it is still an unbiased estimator) and Var[B] = c2/t. Now by Chebychev’s
Inequality we have

Pr[|B − c| ≥ εc] ≤ Var[B]

ε2c2
=

1

tε2
= 1/10 (since we selected t = 10/ε2) .

So algorithm B returns a 1± ε approximation with probability at least 9/10. We now want
to decrease the probability 1/10 of failing all the way down to δ. To do this we use the median
trick. Let C be the algorithm that runs u = 10 ln(1/δ) independent copies of B and outputs the
median of the obtained copies. Let Y be the random output of C. We now analyze the failure
probability of C, i.e., we wish to show Pr[|Y − c| ≥ εc] ≤ δ. To do so define Zi ∈ {0, 1} to be

Page 1 (of 4)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

the indicator random variable that takes value 1 if the i:th run of B outputs a value Bi such
that |Bi − c| ≥ εc. Note that Pr[|Bi − c| ≥ εc] ≤ 1/10 and so Pr[Zi = 1] ≤ 1/10. So if we let
Z = Z1 +Z2 + · · ·+Zu, then Z is a sum of independent variables where E[Z] ≤ u/10. Moreover
since Y is the median of the independent runs of B,

Pr[|Y − c| ≥ εc] ≤ Pr[Z ≥ u/2] .

We shall now analyze Pr[Z ≥ u/2] using the Chernoff Bounds. Indeed, since Z is a sum of
independent random variables taking values in {0, 1} we have

Pr[Z ≥ u/2] ≤ Pr[Z > 3 · E[Z]] ≤ e− ln(1/δ) = δ .

We have thus proved that C satisfies the right guarantees. Let us know analyze its resource
requirements. C runs O(log(1/δ) copies of B and each copy of B runs O(1/ε2) copies A. Thus the
total resource requirements increase by at most a factor O(log(1/δ)1/ε2) as required (calculating
the mean and median can be done in linear time so it does not affect the asymptotic running
time).

2 Suppose that you are given an insertion only stream of items. For every k ≥ 1, give an algorithm
that at each point in the stream maintains k uniformly random elements from the prefix of the
stream sampled without replacement. Your algorithm must use O(k log n) space.

Solution: This is known as reservoir sampling. The algorithm is as follows:

1. Keep the first k items in memory.

2. When the i-th item arrives (for i > k)

• with probability k/i, keep the new item and discard a uniformly random item of those
that are currently in memory;

• with probability 1− k/i, keep the old items and ignore the new one.

We will perform an induction on the number of elements m that the maintained set is a
uniformly random set of k items from the stream. If m ≤ k, the algorithm is clearly correct: this
provides the base of the induction. Let us assume that till some time step j − 1, the maintained
set is a uniformly random subset of the first j − 1 elements of size k.

The inductive step is provided by the following argument. Note that the probability that the
j-th element that arrives in the stream belongs to the set of k uniformly random elements from
1, . . . , j sampled without replacement is exactly(

j − 1

k − 1

)
/

(
j

k

)
=

(j − 1)!

(k − 1− (j − 1))!(k − 1)!
· (k − j)!k!

j!
=
k

j
.

If j is included, then it suffices to add to {j} a uniformly random subset of the first j − 1
elements of size k − 1. Taking a uniformly random element out of the maintained set of size k
achieves exactly this goal.

3 Consider a data stream σ = (a1, . . . , am), with aj ∈ [n] for every j = 1, . . . ,m, where we let
[n] := {1, 2, . . . , n} to simplify notation. For i ∈ [n] let fi denote the number of times element i
appeared in the stream σ.

We say that a stream σ is approximately sparse if there exists i∗ ∈ [n] such that fi∗ = dn1/4e
and for all i ∈ [n] \ {i∗} one has fi ≤ 10. We call i∗ the dominant element of σ. Give a single

Page 2 (of 4)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

pass streaming algorithm that finds the dominant element i∗ in the input stream as long as the
stream is approximately sparse. Your algorithm should succeed with probability at least 9/10
and use O(n1/2 log2 n) bits of space. You may assume knowledge of n (and that n is larger than
an absolute constant).

Solution: In class that we showed that using AMS sketch we can approximate the L2 norm of
a vector within a factor ε with constant probability by maintaining a vector with O(1

ε2
) entries.

We can then use the median trick to obtain our estimate with probability of failure at most δ by
using a vector with O(1

ε2
log(1δ)) entries, hence requiring O(log(1

ε2δ
) log(n)) space. We use this

observation below.
First, we partition the universe into

√
n disjoint blocks [n] = B1 ∪ . . .∪B√n each of size

√
n.

Denote the corresponding frequency vectors by f1, . . . , f
√
n ∈ R

√
n. The algorithm is as follows.

For every j ∈ [
√
n] and every i ∈ Bj we use the AMS sketch with ε a sufficiently small constant

(to be shown later) and δ = 1/n2 to obtain a (1± ε)-approximation to

||f j ||22

and
||f j − dn1/4e · ei||22.

Let aj be the estimate of ||f j ||22 and aji be the estimate of ||f j − dn1/4e · ei||22 respectively.
Let i ∈ Bj . Then if we chose ε such that

(1 + ε)||f j − dn1/4e · ei∗ ||22 < (1− ε)||f j ||22

and
(1 + ε)||f j ||22 < (1− ε)||f j − dn1/4e · ei||22

for i 6= i∗, then since with probability at least 1
n2 each of the following hold

(1− ε)||f j ||22 ≤ aj ≤ (1 + ε)||f j ||22

||f j − dn1/4e · ei||22 ≤ a
j
i ≤ (1 + ε)||f j − dn1/4e · ei||22,

we can take the union bound over these equations to get that with probability at least 9
10 all of

these equations hold.
All that remains is to show that it suffices to choose a constant size value of ε. This follows

because
||f j − dn1/4e · ei||22 − ||f j ||22 = Ω(1)||f j ||2

if i 6= i∗ and
||f j − dn1/4e · ei∗ ||22 − ||f j ||22 = −Ω(1)||f j ||2.

In this case we guess i∗ to be the element i such that aji < aj .

4 Alice, Bob and Charlie. Suppose that Alice and Bob have two documents dA and dB re-
spectively, and Charlie wants to learn about the difference between them. We represent each
document by its word frequency vector as follows. We assume that words in dA and dB come
from some dictionary of size n, and let x ∈ Rn be a vector such that for every word i ∈ [n]1 the
entry xi equals the number of times the i-th word in the dictionary occurs in dA. Similarly, let
y ∈ Rn be a vector such that for every word i ∈ [n] the entry yi denotes the number of times the

1We let [n] := {1, 2, . . . , n}.

Page 3 (of 4)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

i-th word in the dictionary occurs in dB. We assume that the number of words in each document
is bounded by a polynomial in n.

Suppose that there exists i∗ ∈ [n] such that for all i ∈ [n] \ {i∗} one has |xi− yi| ≤ 2, and for
i∗ one has |xi∗ − yi∗ | ≥ n1/2. Show that Alice and Bob can each send a O(log2 n)-bit message to
Charlie, from which Charlie can recover the identity of the special word i∗.

Your solution must succeed with probability at least 9/10. You may assume that Alice, Bob
and Charlie have a source of shared random bits.

Solution: Alice and Bob can both apply the AMS sketch with constant precision and failure
probability 1/n2 to their vectors. Then Charlie subtracts the sketches from each other, obtaining
a sketch of the difference. Once the sketch of the difference is available, one can find the special
word similarly to the previous problem.

Page 4 (of 4)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

