
Exercise Set VIII, Algorithms II 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 In the previous exercise set you showed that if n balls are placed in n bins using a pairwise
independent hash function h : {1, 2, . . . , n} → {1, 2, . . . , n}, then the maximum bin load is
O(
√
n) with high constant probability. Give an example of a pairwise independent hash family

(i.e., a distribution over hash functions) such that the expected maximum bin load is Ω(
√
n)

with high probability.

2 In this problem we shall use the following properties of MinHashing (prove them if you feel good
today): Let X1, . . . , Xn be independent random variables uniformly distributed in [0, 1] and let
Y = min{X1, . . . , Xn}. Then E[Y] = 1

n+1 and Var(Y) ≤ 1
(n+1)2

.
We now use these properties to analyze a different algorithm than the one explained in

class for estimating the number of distinct elements in a sequence. Indeed, consider the fol-
lowing algorithm for estimating F0, the number of distinct elements in a sequence x1, . . . , xm ∈
{0, 1, . . . , n−1}. Let h : {0, 1, . . . , n−1} → [0, 1] s.t. h(i) is chosen uniformly and independently
at random in [0, 1] for each i. We start with Y = 1. After reading each element xi in the sequence
we let Y = min{Y, h(xi)}.

2a Show that by the end of the stream 1
E[Y] − 1 is equal to F0.

2b (*) Use the above idea to design a streaming algorithm to estimate the number of dis-
tinct elements in the sequence with multiplicative error 1 ± ε. For the analysis you can
assume that you have access to k independent hash functions as described above. Show
that k ≤ O(1/ε2) many such hash functions are enough to estimate the number of distinct
elements within factor 1 + ε with probability at least 9/10.

Hint: run the k copies of the above algorithm in parallel. Let Yi be the Y variable of
the i:th copy. Then what is the expected value and variance of the random variable
(Y1 + Y2 + . . . Yk)/k? Then apply Chebychev’s Inequality.

Page 1 (of 2)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

3 Consider the problem where we wish to find a large cardinality matching in a graph in the semi-
streaming model. That is, the edges are streamed one-by-one. The graph has n vertices and we
assume that your algorithm has access to storage space O(n · poly log n) (that is why it is called
semi-streaming and not streaming as we have quite a lot of memory compared to the logarithmic
memory seen in the lecture). Notice that although you have quite a lot of storage space, you do
not have enough memory to store all (potentially Ω(n2) many) edges. Devise an algorithm in this
setting that returns a matching that has cardinality at least 1/2 that of a maximum cardinality
matching. (We note that improving the factor 1/2 is considered a major open problem.)

Hint: think greedy.

4 (Final exam question from 2017) Set packing in the semi-streaming model.
Consider the problem of finding a maximum cardinality set packing in the semi-streaming

model. An instance of this problem consists of a known universe U of n elements and sets S ⊆ U
are streamed one-by-one. The goal is to select a family T of pairwise disjoint sets (i.e., S∩S′ = ∅
for any two distinct sets S, S′ ∈ T) of maximum cardinality while only using O(n · poly log n)
storage space.

Devise an algorithm in this setting that returns a set packing of cardinality at least 1/k times
that of a maximum cardinality set packing, assuming that each streamed set S has cardinality
at most k, i.e., |S| ≤ k.

(In this problem you are asked to (i) design the algorithm, (ii) show that it uses O(n·polylog n)
space, and (iii) prove that it returns a solution of cardinality at least 1/k times the cardinality of
a maximum cardinality set packing. Recall that you are allowed to refer to material covered in
the course.)

Page 2 (of 2)

Advanced Algorithms • Fall 2024
Michael Kapralov and Ola Svensson

