
Exercise Set VII, Advanced Algorithms 2024
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 (Basic Hashing) Consider a Hash Family H where each h ∈ H is a function h : U → [n] that
maps the elements U to integers {0, 1, . . . , n − 1}. We assume throughout this exercise that
|U | = n and so we are in the classic balls-and-bin setting (with n balls and n bins). Assume that
H is a pairwise independent hash family, i.e., it satisfies the following:

1. Prh∈H[h(x) = y ∧ h(x′) = y′] = 1
n2 for all x 6= x′ ∈ U and y, y′ ∈ [n].

1a Let Y be the number of items that hash to value 1, i.e., Y = |{x ∈ U : h(x) = 1}|. Prove
that Eh∈H[Y ] = |U |/n = 1 and Var[Y ] ≤ 1.

Solution: Let Yx be the random indicator variable that takes value 1 if h(x) = 1 and 0 otherwise.
Then Y =

∑
x∈U Yx

E[Y ] =
∑
x∈U

E[Yx] =
|U |
n

= 1 . (Recall that pairwise independent imply that Pr[h(x) = y] = 1/n for all x ∈ U, y ∈ [n].)

Var[Y ] = E[Y 2]− E[Y ]2

=
∑

x1,x2∈U
E[Yx1Yx2 ]−

∑
x1,x2∈U

E[Yx1 ]E[Yx2 ]

≤
∑
x∈U

(E[Yx]− E[Yx]2) (using the two properties of H)

= n · (1/n− 1/n2) = (1− 1/n) .

1b Use the solution to the previous subproblem to prove that

Pr[Y ≥ 2
√
n+ 1] ≤ 1

4n
.

Note that this implies (using the union bound over the n hash values) that no hash value
(i.e., no bin) will receive more than 2

√
n keys with probability at least 3/4. In the lecture,

we obtained the much better bound of O(log n/ log logn) when assuming complete inde-
pendence of the hash family. Here, we only assume pairwise independence which still leads
to a good (but worse) bound.
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Hint: For the proof use Chebychev’s Inequality: Let Y be a random variable with expec-
tation µ and variance σ2. Then for any real number k > 0,

Pr[|Y − µ| ≥ kσ] ≤ 1

k2
.

Solution: It is straightforward from applying the Chebychev’s Inequality with k = 2
√
n.

2 (MinHashing) Suppose we have a universe U of elements. For A,B ⊆ U , the Jaccard distance
of A,B is defined as

J(A,B) =
|A ∩B|
|A ∪B|

.

This definition is used in practice to calculate a notion of similarity of documents, webpages,
etc. For example, suppose U is the set of English words, and any set A represents a document
considered as a bag of words. Note that for any two A,B ⊆ U , 0 ≤ J(A,B) ≤ 1. If J(A,B) is
close to 1, then we can say A ≈ B.

Let h : U → [0, 1] where for each i ∈ U , h(i) is chosen uniformly and independently at
random. For a set S ⊆ U , let hS := mini∈S h(i). Show that

Pr[hA = hB] = J(A,B).

Now, if we have sets A1, A2, . . . , An, we can use the above idea to figure out which pair of sets
are “close” in time essentially O(n|U |). We can also obtain a good approximation of J(A,B)
with high probability by using several independently chosen hash functions. Note that the naive
algorithm would take O(n2|U |) to calculate all pairwise similarities.

Solution: First, let us simplify the situation a little by noticing that with probability 1, all
elements h(i) for i ∈ U are different. This is because Pr[h(i) = h(j)] = 0 for i 6= j (recall that
each h(i) is uniform on the interval [0, 1]).

Given this, let us see where mini∈A∪B h(i) is attained:

• if it is attained in A ∩B, then hA = hB = hA∪B = hA∩B,

• otherwise, say it is attained in A \B: then hA < hB.

Therefore the event hA = hB is (almost everywhere) equal to hA∪B = hA∩B. Furthermore, notice
that for any set S ⊆ U and any i ∈ S we have Pr[h(i) = hS ] = 1/|S| due to symmetry. Therefore

Pr[hA = hB] = Pr[hA∩B = hA∪B] =
∑

i∈A∩B
Pr[h(i) = hA∪B] = |A ∩B| · 1

|A ∪B|
= J(A,B).

3 (*, Pairwise independent random variables) Let y1, y2, . . . , yn be uniform random bits. For each
non-empty subset S ⊆ {1, 2, . . . , n}, define XS = ⊕i∈S yi. Show that the bits {XS : ∅ 6= S ⊆
{1, 2, . . . , n}} are pairwise independent.

This shows how to stretch n truly random bits to 2n − 1 pairwise independent bits.

Hint: Observe that it is sufficient to prove E[XS ] = 1/2 and E[XSXT ] = 1/4 to show that
they are pairwise independent. Also use the identity ⊕i∈A yi = 1

2

(
1−

∏
i∈A(−1)yi

)
.
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Solution: Recall the definition of pairwise independence: for any non-empty S and T such that
S 6= T and two bits bS and bT , we have

Pr[XS = bS ∧XT = bT ] = 1/4 .

We now first argue that E[XS ] = 1/2,E[XT ] = 1/2 and E[XSXT ] = 1/4 implies that they are
pairwise independent. We have

Pr[XS = 1 ∧XT = 1] = E[XSXT ] = 1/4 ,

Pr[XS = 1 ∧XT = 0] = E[XS ]− E[XSXT ] = 1/4 ,

Pr[XS = 0 ∧XT = 1] = E[XT ]− E[XSXT ] = 1/4 ,

Pr[XS = 0 ∧XT = 0] = “remaining probability” = 1− 3 · 1/4 = 1/4 .

We thus complete the proof by showing that E[XS ] = E[XT ] = 1/2 and E[XSXT ] = 1/4. In
both calculations we use the identity ⊕i∈A yi = 1

2

(
1−

∏
i∈A(−1)yi

)
. For the former,

E[XS ] = E[⊕i∈S yi] = E

[
1

2

(
1−

∏
i∈S

(−1)yi

)]
=

1

2

(
1−

∏
i∈S

E[(−1)yi ]

)
=

1

2
.

The second to last equality is due to the independence of the random bits yi and the last equality
follows because yi is an uniform random bit. The same calculation also shows that E[XT ] = 1/2.

For the latter,

E[XSXT ] = E[⊕i∈S yi · ⊕i∈T yi]

= E

[
1

2

(
1−

∏
i∈S

(−1)yi

)
· 1

2

(
1−

∏
i∈T

(−1)yi

)]

=
1

4

(
1− E

[∏
i∈S

(−1)yi

]
− E

[∏
i∈T

(−1)yi

]
+ E

[∏
i∈S

(−1)yi
∏
i∈T

(−1)yi

])

=
1

4

(
1 + E

[∏
i∈S

(−1)yi
∏
i∈T

(−1)yi

])
(by independence of yis)

=
1

4

(
1 + E

[ ∏
i∈S∆T

(−1)yi

])
(recall S∆T = S \ T ∪ T \ S)

=
1

4
(S∆T 6= ∅ and again using independence of yis.
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